期刊文献+

有Bernoulli休假和可选服务的Geo/G/1重试排队 被引量:1

A Discrete-Time Geo/G/1 Retrial Queue with Bernoulli Vacation and Second Optional Service
原文传递
导出
摘要 讨论了有Bernoulli休假策略和可选服务的离散时间Geo/G/1重试排队系统.假定一旦顾客发现服务台忙或在休假就进入重试区域,重试时间服从几何分布.顾客在进行第一阶段服务结束后可以离开系统或进一步要求可选服务.服务台在每次服务完毕后,可以进行休假,或者等待服务下一个顾客.还研究了在此模型下的马尔可夫链,并计算了在稳态条件下的系统的各种性能指标以及给出一些特例和系统的随机分解. We analyze a discrete-time Geo/G/lretrial queue with Bernoulli vacation where all the arriving customers require a first essential service while only some of them demand a second optional service. If upon arrival, the server is busy or vacation, the customer is obliged to leave the service area and to orbit. Each customer in the orbit forms an independent retrial source and the retrial time follows a geometrical law. Just after completion of a customer's service the server may take a vacation of random length or may opt to continue staying in the system to serve the next customer. We study the Markov chain underlying the considered queuing system and some performance measures of the system in steady-state. Further, we give two stochastic decomposition laws and some examples.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第3期121-128,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(70571030 10571076) 安徽省2010年高校省级优秀青年人才基金(2010SQRL129) 巢湖学院科研启动基金(XLZ-200901)
关键词 离散时间重试排队 BERNOULLI休假 可选服务 随机分解 discrete-time retrial queue Bernoulli vacation optional service stochastic decomposition
  • 相关文献

参考文献5

  • 1Meisling T. Discrete time queueing theory[J]. Perations Research, 1958, 6: 96-105.
  • 2Jinting Wang , Qing Zhao. Discrete-time Geo/C/1 retrial queue with general retrial times and starting failures [J]. Mathematical and Computer Modelling, 2007(45): 853-863.
  • 3Krishna Kumar B, Arivudainambi D. The M/G/1 retrial queue with bernoulli schedules and general retrial times[J]. Computers and Mathematics with Applications, 2002(43): 15-30.
  • 4Atencia I, Moreno P. A discrete-time retrial queue with 2nd optional service[CJ/Froceeding of Fifth International Workshop on Retrial Queues, 2004: 117-121.
  • 5Conway JB. Functions of One Complex Variable[M]. New York: Springer Press, 1973.

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部