摘要
利用核函数及其性质,对P*(K)阵线性互补问题提出了一种新的宽邻域不可行内点算法.对核函数作了一些适当的改进,所以是不同于Peng等人介绍的自正则障碍函数.最后证明了算法具有近似0((1+2k)n3/4;lognμo/ε)多项武复杂性,是优于传统的基于对数障碍函数求解宽邻域内点算法的复杂性.
In this paper, we propose a new large-update interior-point algorithm for P*(k) linear complementarity problems based on kernel functions .We improve some mild conditions on the kernel functions and give a new class of kernel functions .so it is different from the selfregular, functions introduced by Peng. Finally, we show that the complexity of the algorithm 3 has so far worst case O((1 + 2k)n3/4 lognμo/ε),which is better than the classical large-update algorithm based on the classical logarithmic barrier functions.
出处
《数学的实践与认识》
CSCD
北大核心
2011年第3期192-201,共10页
Mathematics in Practice and Theory
基金
国家自然科学基金(71071119)
关键词
互补问题
内点算法
多项式复杂性
核函数
宽邻域
complementarity problem
interior-point algorithm
polynomial-time complexity
kernel function
large-update