期刊文献+

组合松弛算法的研究与分析

Research and analysis of combinatorial relaxation algorithm
下载PDF
导出
摘要 基于Modelica语言的仿真建模往往得到的数学模型是高指标的微分代数系统,结构指标约简算法是约简此类高指标问题的一种快速算法。为了解决算法少数情况下的失效问题,深入研究和分析了一种修正算法——组合松弛算法。针对线性时不变系统设计并实现了该算法,并通过两个具体实例表明了组合松弛算法能够有效地检测并修正结构指标约简算法的失效问题。 Modelica language based modeling and simulation usually gets a mathematical model which is a high-indexed differentialalgebraic equation system. The structural index reduction algorithms can serve as a fast method to reduce such high-indexed issues. In order to solve the failure of the structural index reduction algorithms in a few cases, another algorithm which is called combinatorial relaxation algorithm is analyzed and studied. Then, the algorithm is verified by a linear time-invariant system modeling process with two examples presented, respectively. Finally, the result of these two examples shows the correction algorithm presented is an effective way to detect and correct the application of structural index reduction algorithms.
出处 《计算机工程与设计》 CSCD 北大核心 2011年第2期554-559,563,共7页 Computer Engineering and Design
基金 国家自然科学基金委员会-中国工程物理研究院"NSAF"联合基金项目(10776035) 国家973重点基础研究发展计划基金项目(G2005CB321702)
关键词 微分代数方程 指标约简 微分指标 结构指标 组合松弛算法 differential-algebraic equation index reduction differential index structural index combinatorial relaxation algorithm
  • 相关文献

参考文献10

  • 1Fritzson P.Principles of object-oriented modeling and simulation with modelica 2.1 [M].New York:IEEE Press,2003.
  • 2Peter Fritzson.Modelica meta-programming and symbolic trans- formations [M]. http://www.ida.liu.se/-adrpo/omc/omdev/min- gw/MetaModelica-UsersGuide.pdf,2007.
  • 3Kazuo Murota.Matrices and matroids for systems analysis(algo- rithms and combinatorics 20)[M].Berlin:Springer,2010.
  • 4Thomas H Cormen,Charles E Leiserson,Ronald L Rivest, et al. Introduction to algorithms[M].3rd ed.MIT Press,2009:664-669.
  • 5Gaussian elimination[EB/OL], http://en.wikipedia.org/wild/Gau- ssian_elimination,2010.
  • 6Volker Mehrmann,Shi Chunchao.Transformation of high order linear differential-algebraic systems to first order[J].Numerical Algorithms,2006,42(3-4):281-307.
  • 7Lamour R.Index determination and calculation of consistent ini- tial values for DAEs[J].Computers and Mathematics with Ap- plications,2005,50(7): 1125-1140.
  • 8Hungary algorithm[EB/OL], http://en.wikipedia.org/wiki/Hun- garian_algorithm,2010.
  • 9LTI system theory [EB/OL]. http://en.wikipedia.org/wiki/LTI_ system_theory,2010.
  • 10Modelica Association. Modelica language specification [EB/ OL]. http://www.modelica.org/documents/ModelicaSpec32.pdf, 2010.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部