期刊文献+

壳聚糖-g-N-羧甲基-二(2-苯并咪唑)-1,2-乙二醇和纳米金溶胶复合物固定漆酶修饰玻碳电极的直接电化学 被引量:3

Direct Electrochemistry of Glassy Carbon Electrode Modified by Complex of Nanogold Sol and Chitosang-N-Carboxymethyl-Bi(2-Benzoimidazole)1,2-Ethandiol with Laccase Entrapped
下载PDF
导出
摘要 制备了壳聚糖-g-N-羧甲基-二(2-苯并咪唑)-1,2-乙二醇(CTS-g-N-CBBIE),将其与纯化的纳米金溶胶(NGS)共混得到CTS-g-N-CBBIE-NGS复合物。以此复合物作为固酶载体固定云芝漆酶,固酶量大(31.10 mg/g),固酶比活力高(1.43 U/mg);此固酶复合物修饰的玻碳电极在无氧磷酸盐-柠檬酸盐缓冲溶液(pH=5.0)中可以实现无中介酶-电极直接电子迁移(一对准可逆氧化还原峰式电位576 mV(vs.Ag/AgCl)对应于漆酶活性中心T1位的氧化还原),电子迁移速率常数为228.3 s-1。当氧气浓度较小时,这种固酶修饰电极对氧气还原具有一定的生物电催化性能(空气饱和缓冲溶液中氧还原峰电位约为320 mV(vs.Ag/AgCl))。当氧气浓度增高后,氧还原反应受到抑制;但这种漆酶修饰电极对pH较为敏感,且稳定性和重复使用性欠佳。 Chitosan-g-N-carboxymethyl-bi (2-benzoimidazole) -1,2-ethandiol (CTS-g-N-CBBIE) was synthesized through grafting on the side chain of chitosan with 2-bromoacetic acid, chitosan, bi (2-benzoimidazole)-1,2- ethandiol, chloroauric acid and sodium citrate as raw materials. Compsosite of CTS-g-N-CBBIE-NGS was obtained by means of intermixing purified nanogold sol (NGS) and CTS-g-N-CBBIE. The composite was adopted to act as the carrier of immobilized laccase from Trametes versicolor mainly by means of physical entrapment. The laccase-entrapped CTS-g-N-CBBIE-NGS composite with superiority of high laccase-loading (31.10 mg/g) and specific activity of immobilized enzyme (1.43 U/mg) was used to modify the glassy carbon electrode(GCE). Results from experiments conducted on this laccase modified glassy carbon electrode showed mediatorless direct electron transfer occurred between active site of laccase and laccase modified electrode in deaerated phosphate-citrate buffer solution (pH = 5.0 ) (formal potential of quasi-reversible redox peaks corresponding to the T1 site copper ion in the laccase : 576 mV ( vs. AgCl/Ag) ). Rate constant of electron transfer:228.3 s-1 was derived from relationship of separation of redox peaks and logarithm of scan rates. Laccase-entrapped matrix modified GCE also displayed bioelectrocatalytic effect on oxygen reduction reaction to some extent under low oxygen concentration (peak potential of laccase modified GCE for oxygen reduction reaction in air-saturated buffer solution at ca. 320 mV (vs. AgCl/Ag)). Oxygen reduction reaction was depressed when oxygen concentration increased. This laccase modified electrode was sensitive to variation of pH and its inferiority originated from undesirable usability and long-term stability. It is essential for higher bioelectrocatalytic function on oxygen reduction reaction of laccse modified electrode that constituent of composite to immobilize enzyme which was used to modify electrode must be optimized.
出处 《应用化学》 CAS CSCD 北大核心 2011年第3期326-332,共7页 Chinese Journal of Applied Chemistry
关键词 壳聚糖-g—N羧甲基-二(苯并咪唑)乙二醇 直接电子迁移 纳米金溶胶 漆酶 生物电催化 Chitosan-g-N-carboxymethyl-bi (benzoimidazole) -ethandiol, direct electron transfer, nanogold sol,laccase, bioelectrocatalysis
  • 相关文献

参考文献24

  • 1Willner I, Katz E, Chief-Edit. Bioelectronics [ M ]. Chap 3. Strauss : Wiley-VCH,2005:35-93.
  • 2LIU Ying, QU Xiaohu, GUO Hongwei, et al. Facile Preparation of Amperometric Laccase Biosenser with Muhifunction Based on the Matrix of Carbon Nanotubes-chitosan Composite[J]. Biosens Bioelectron,2006,21:2195-2201.
  • 3Farneth W E ,Diner B A,Gierke T D ,et al. Current Densities from Electrocatalytic Oxygen Reduction in Laccase/ABTS Solutions [ J ]. J Electroanal Chem ,2005,581 : 190-196.
  • 4Karnicka K, Miecznikowski K, Kowalewska B, et al. ABTS-Modified Multiwalled Carbon Nanotubes as an Effective Mediating System for Bioelectrocatalytic Reduction of Oxygen [ J ]. J Anal Chem,2008,80 (19) :7643-7648.
  • 5LIU Ying, WANG Mingkui, ZHAO Feng,et al. The Direct Electron Transfer of Glucose Oxidase and Glucose Biosensor Based on Carbon Nanotubes/Chitosan Matrix [ J ]. Biosensors Bioelectronics ,2005,21:984-988.
  • 6Klis M, Karbarz M, Stojek Z, et al. Thermoresponsive Poly(N-Isopropylacry-lamide) Gel for Immobilization of Laccase on Indium Tin Oxide Electrod[J]. J Phys Chem B,2009,113:6062-6068.
  • 7Barriere F, Ferry Y, Rochefort D, et al. Targetting Redox Polymers as Mediators for Laccase Oxygen Reduction in a Membrane-Jess Biofuel Cell[ J]. Electrochem Comm,2004,6:237-241.
  • 8Habermuller K, Ramanavicius A, Laurinavicius V, et al. An Oxygen-Insensitive Reagentless Glucose Biosensor Based on Osmium-Complex Modified Polypyrrole[ J]. Electroanalysis ,2000,12(17) : 1383-1389.
  • 9Ackermann Y, Guschin D A, Eckhard K, et al. Design of a Bioelectrocatalytic Eectrode Interface for Oxygen Reduction in Biofuel Cells Based on A Specifically Adapted Os-Complex Containing Redox Polymer with Entrapped Trametes Hirsuta Laccase[ J ]. Electrochem Comm ,2010,12:640-643.
  • 10Qiu Huajun, Xu Caixia, Huang Xirong, et al. Adsorption of Laccase on the Surface of Nanoporous Gold and the Direct Electron Transfer between Them[ J]. J Phys Chem C,2008,112 : 14781-14785.

二级参考文献46

共引文献38

同被引文献78

  • 1黄俊,周菊英,肖海燕,龙胜亚,王军涛.CuTAPc-Fe_3O_4纳米复合粒子及其漆酶固定化研究[J].化学学报,2005,63(14):1343-1347. 被引量:24
  • 2Klis M, Karbarz M, Stojek Z, et al. Thermoresponsive Poly (N-Isopropylacrylamide) Gel for Immobilization of Laccase on Indium Tin Oxide Electrodes [ J ]. J Phys Chem B, 2009,113 ( 17 ) :6062-6068.
  • 3Rahman M A,Noh H B, Shim Y B. Direct Electrochemistry of Laccase Immobilized on Au Nanoparticles Encapsulated- Dendrimer Bonded Conducting Polymer:Application for a Cateehin Sensor[J]. Anal Chem,2008,80(21) :8020-8027.
  • 4Tsujimura S, Kamitaka Y, Kano K. Diffusional-Controlled Oxygen Reduction on Multi-Copper Oxidase-Adsorbed Carbon Aerogel Electrodes without Mediator[J]. Fuel Cells,2007,6:463-469.
  • 5Heller A. Miniature Biofuel Cells[J]. Phys.Chem,Chem.Phys.,2004,6: 209 - 216.
  • 6Gallaway JW,Barton SAC. Kinetics of Redox Polymer-Mediated Enzyme Electrodes[J].Am.Chem.Soc., 2008? 130: 8527 - 8536.
  • 7Katz E? Heleg -Shabtai V,Willner I,et al. Surface Reconstitution of a De Novo Synthesized Hemoprotein for Bioelectronic ApplicationsU.Angew. Chem. Int. Ed , 1998,37(23) : 3253 - 3256.
  • 8Meredith MT, Minson M, Hickey D, et al. Anthracene-Modified Multi-Walled Carbon Nanotubes as Direct Electron Transfer Scaffoldsfor Enzymatic Oxygen Reduction [J]. ACS Catal, 2011, 1: 1683 - 1690.
  • 9Karnicka K, Miecznikowski K,Kowalewska B, et al.ABTS~Modified Multi- walled Carbon Nanotubes as an Effective Mediating Systemfor Bioelectro -catalytic Reduction of Oxygen[J]. Ana/ Chem,2008,80(19) : 7643 - 7648.
  • 10Tsujimura S,Tatsumi H, Ogawa J, et al. Tsujimura S,Tatsumi H,Ogawa J,et al. 2001. Bioelectrocatalytic Reduction of Dioxygen toWater at Neutral pH Using Bilirubin Oxidase as An Enzyme and 2,2?-Azinobis (3 - ethylbenzothiazolin- 6 - sulfonate) as an ElectronTransfer Mediator[J]J Electroanal Chem,2001,496 : 69 - 75.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部