期刊文献+

基于回声状态网络的进化机器人路径规划方法 被引量:2

A Method of Path Planning for Evolutionary Robots Based on Echo State Network
下载PDF
导出
摘要 在移动机器人路径规划问题的研究中,针对进化机器人在不同环境下需要重新进化与学习的问题,为了使进化机器人准确定位,提出了一种基于(μ+λ)-ES进化策略的回声状态网络路径规划算法,利用回声状态网络构建移动机器人传感器输入和执行器输出之间的映射关系,利用(μ+λ)-ES进化策略对回声状态网络进行无监督学习,机器人利用进化获得的神经网络控制器进行路径规划。仿真结果表明,根据回声状态网络的路径规划方法对于机器人动态未知环境具有较好的实时性和适应性,达到准确定位目标。 For the re-evolution of the mobile robot behavior in unknown environments,an algorithm of path planning was presented based on recurrent neural network for evolutionary robots.The mapping relation was constructed between input of sensors and output of actuators based on echo state network.The(μ+λ)-Evolution Strategy is used to optimize the output weights of echo state network.The robot can generate the optimal trajectory under dynamic environments via the neural network controller.The experimental results indicate that the proposed approach has high adaptability and real-time ability under dynamic environments.
出处 《计算机仿真》 CSCD 北大核心 2011年第2期217-220,共4页 Computer Simulation
基金 国家自然科学基金(60675044)
关键词 机器人 路径规划 回声状态网络 进化策略 Robots Path planning Echo state networks Evolution strategy
  • 相关文献

参考文献10

  • 1RobinRMurphy著,杜军平,等译.人工智能机器人学导论[M].北京:电子工业出版社,2004.
  • 2J A F Leon, M Tosini, G G Acosta. Evolutionary Reactive Behavior for Mobile Robots Navigation[ C]. IEEE Trans. on Cybernetics and Intelligent Systems, Singapore, 2004,1:532 - 537.
  • 3A L Nelson, E Grant and J M Gatwtti. Maze Exploration Behaviors Using an Integrated Evolutionary Robotic Environment[ J]. Robotics and Autonomous Systems, 2004,46 : 159 - 173.
  • 4A L Nelson, E Grant and G Barlow. Evolution of Complex Autonomous Robot Behaviors using Competitive Fitness [ C ]. Trans. on Integration of Knowledge Intensive Multi - Agent Systems, Boston, USA, 2003,1 : 145 - 150.
  • 5H Jaegera, M Lukoseviciusa and D Popovicia. Optimization and Applications of Echo State Networks with Leaky Integrator Neurons [ J]. Neural Networks, 2007,20 : 335 - 352.
  • 6H Jaeger and H Haas. Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication [ J ]. Science, 2004,304(2) : 78 -80.
  • 7D Prokhorov. Echo State Networks: Appeal and Challenges [ C ]. IEEE Trans. on Neural Networks, Montreal, Canada,2005,1 : 1463 - 1466.
  • 8D Alexandre, B Nicolas and S Marc. Unsuper - vised Learning of Echo State Networks: A Case Study in Artificial Embryogeny[ M ]. Heidelberg: Springer Berlin/Heidelber, 2008.
  • 9C Hartland and N Bredeche. Using Echo State Networks for Robot Navigation Behavior Acquisition[ C ]. IEEE Trans on Robotics and Biomimetics, Sanya, China, 2007,1:201 - 206.
  • 10M Cerniansk and M Makula. Feed -forward Echo State Networks [ C ]. IEEE Trans on Neural Networks, Montreal, Canada, 2005,1 : 1479 - 1482.

共引文献1

同被引文献30

  • 1谷东兵,宋正勋,胡豁生,布雷德.麦克.移动机器人的局部路径规划与控制[J].兵工学报,2000,21(1):53-56. 被引量:2
  • 2孙波,陈卫东,席裕庚.基于粒子群优化算法的移动机器人全局路径规划[J].控制与决策,2005,20(9):1052-1055. 被引量:79
  • 3刘美俊.基于改进学习算法的模糊神经网络控制系统[J].中国电机工程学报,2007,27(19):87-92. 被引量:14
  • 4RobinRMurphy著,杜军平,等译.人工智能机器人学导论[M].北京:电子工业出版社,2004.
  • 5Choi J W, Kwon S H, Lee H Y, Lee S G. Navigation strategy of an intelligent mobile robot using fuzzy logic [ C]. The 1998 IEEE International Conference on: Fuzzy Systems Proceedings. 1998: 602 - 605.
  • 6Shervin Emami, Gordon Wyeth, Michael J. Milford. Framework for the Long - Term Operation of a Mobile Robot via the Internet [ C ]. Proceedings of the 2005 Australasian Conference on Robotics and Automation, 2005.
  • 7Salem Y. Al - Agtash, Amjed A. Al - Fahoum. An evolutionary computation approach to electricity trade negotiation [ J ]. Advances in Engineering Software, 2005, 36 (3) : 173 -179.
  • 8J. Zeng, J. Jie, C. Han. An extended mind evolutionary computation model for optimizations [ J]. Applied Mathematics and Computation, 2007, 185(2) : 1038 - 1049.
  • 9Liviu Panait, Sean Luke. Cooperative Multi -Agent Learning: The State of the Art [ J ]. Autonomous Agents and Multi - Agent Systems, 2005, 11 (3) : 387 - 434.
  • 10Wang Long, Fu Feng, Chen Xiaojie, Chu Tianguang, Xie Guangming. Collective behaviors and self - organizing cooperation [ C ]. Proceedings of the 26th Chinese Control Conference, CCC 2007, 553 - 558.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部