摘要
火灾报警识别是保证安全的手段。在视频火灾识别中,火灾目标的提取是其关键问题,针对提高火灾识别率,为了精确地提取火焰目标,在分析火灾图像特性的基础上,采用数字图像处理技术和模式识别技术,提出了一种新的基于面积阈值的火焰目标提取,继后根据火灾发生时火焰的色彩、蔓延时面积大小和相似度以及烟雾等特征信息来识别、判断是否有火灾的发生。仿真实验表明算法具有比较好的健壮性。能够有效地提取出连续图像序列中的火焰目标图像和有效地降低火灾监控系统误报和漏报率,并对于一般大空间场合的火灾监控也是有效的。
Segment algorithms of Flame Object is a key problem in fire recognition based on video sequences applications and have a direct impact on improving fire recognition accuracy.To segment flame object precisely,based on analyzing fire image characteristic,this paper introduces a new segmentation method of flame goal based on threshold value of the area using digital image processing technology and pattern recognition technology.Further,it can judge whether fire occurs from the characteristic information,such as,the fire flame color,spreading area and the similarity change,and fire smoke etc.Experiments prove that the method has better robustness.It can segment the image of flame effectively from a sequence of images and reduce the false and missing alarms of the fire surveillance system.So it is very effective to the complex large outdoors occasion.
出处
《计算机仿真》
CSCD
北大核心
2011年第2期304-307,共4页
Computer Simulation
基金
江苏省高校自然科学基金(08KJB520001)资助
关键词
火灾检测
轮廓提取
火焰识别
面积识别
烟雾识别
Fire detection
Edge extraction
Flame recognition
Area recognition
Smoke recognition