期刊文献+

视频火灾识别的关键技术研究 被引量:18

Research of Key Technologies of Fire Recognition Based on Video Sequences
下载PDF
导出
摘要 火灾报警识别是保证安全的手段。在视频火灾识别中,火灾目标的提取是其关键问题,针对提高火灾识别率,为了精确地提取火焰目标,在分析火灾图像特性的基础上,采用数字图像处理技术和模式识别技术,提出了一种新的基于面积阈值的火焰目标提取,继后根据火灾发生时火焰的色彩、蔓延时面积大小和相似度以及烟雾等特征信息来识别、判断是否有火灾的发生。仿真实验表明算法具有比较好的健壮性。能够有效地提取出连续图像序列中的火焰目标图像和有效地降低火灾监控系统误报和漏报率,并对于一般大空间场合的火灾监控也是有效的。 Segment algorithms of Flame Object is a key problem in fire recognition based on video sequences applications and have a direct impact on improving fire recognition accuracy.To segment flame object precisely,based on analyzing fire image characteristic,this paper introduces a new segmentation method of flame goal based on threshold value of the area using digital image processing technology and pattern recognition technology.Further,it can judge whether fire occurs from the characteristic information,such as,the fire flame color,spreading area and the similarity change,and fire smoke etc.Experiments prove that the method has better robustness.It can segment the image of flame effectively from a sequence of images and reduce the false and missing alarms of the fire surveillance system.So it is very effective to the complex large outdoors occasion.
机构地区 淮阴工学院
出处 《计算机仿真》 CSCD 北大核心 2011年第2期304-307,共4页 Computer Simulation
基金 江苏省高校自然科学基金(08KJB520001)资助
关键词 火灾检测 轮廓提取 火焰识别 面积识别 烟雾识别 Fire detection Edge extraction Flame recognition Area recognition Smoke recognition
  • 相关文献

参考文献6

二级参考文献22

  • 1SAHOO P K,WANG A K C,CHEN Y C.A survey of thresholding technique[J].Computer Vision,Graphics,and Image Processing.1988,41:233-260.
  • 2Yamagishi H,Yamaguchi J.Fire flame detection algorithm using a color camera[C]∥Proceedings of 1999 International Symposium on Micromechatronics and Human Science.Nagoya,Japan,1999:255-260.
  • 3Yamagishi H,Yamaguchi J.A contour fluctuation data processing method for fire flame detection using a color camera[C]∥IEEE 26th Annual Conference on IECON of the Industrial Electronics Society,Nagoya,Japan,2000,(2):824-829.
  • 4Noda S,Ueda K.Fire detection in tunnels using an image processing method[C]∥Proceedings of Vehicle Navigation and Information Systems Conference.Yokohama,Japan,1994:57-62.
  • 5Phillips Ⅲ W,Shah M,Da Vitoria Lobo N.Flame recognition in video[C]∥Fifth IEEE Workshop on Applications of Computer Vision.California:Palm Springs,2000:224-229.
  • 6Healey G,Slater D,Lin T,et al.A system for real-time fire detection[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York,1993:605-606.
  • 7Video smoke detection[EB/OL].http://www.chubb.com.au/vsd.asp.
  • 8CHEN Thou-ho,KAO Cheng-liang,CHANG Sju-ma.An intelligent real-time fire-detection method based on video[C]∥Processings of IEEE 37th Annual 2003 International Carnahan Conference on Security Technology.Taipei,2003:104-111.
  • 9Stauffer C,Grimson W E L.Learning patterns of activity using real-time tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2000,22(8):747-757.
  • 10Pavlidis I,Morellas V,Tsiamyrtzis P,Harp S.Urban surveillance systems:from the laboratory to the commercial world[C]∥Proceedings of the IEEE,2001,89(10):1 478-1 497.

共引文献100

同被引文献110

引证文献18

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部