期刊文献+

医学图像快速插值算法的设计与实现 被引量:3

Fast Medical Image Interpolation Algorithm's Design and Realization
下载PDF
导出
摘要 研究医学图像,针对断层间距影响像素间距、图像轮廓粗糙问题,采用图像插值算法可以解决医学图像三维重建模型的轮廓粗糙、呈阶梯状的问题,但是传统插值算法的运算量大,加之医学图像序列包含的图像多、图像本身比较大,处理起来需要耗费大量的时间,未能在医学图像三维重建领域得到广泛应用。为了提高分辨率和快速性,提出了一种基于距离变换的图像插值优化算法。算法依据图像的相似性信息,极大地减少了参与计算的像素点,同时采用一种快速的距离计算方法,避免了乘法和开方运算,使得算法效率大幅提高。将优化算法应用于医学图像序列中进行仿真,结果表明,生成的插值图像边界清晰、过渡平滑,与传统算法相比所需的时间减少了60%以上。证明改进的算法可有效地解决传统算法的效率问题,为医学图像研究提供了科学依据。 Interpolation algorithm can solve the three dimensional reconstruction problem of medical image that makes the reconstructed edges rough and ladder like,but traditional algorithm costs large amount of computation,especially for medical sequence images whose image is very large.Therefore,it has not been widely adopted in the medical image three dimension reconstruction fields.To solve the problem,an improved interpolation method based on distance transform is presented in this paper.According to the similarity information of images,the algorithm greatly reduces the number of pixels needed to be calculated.Meanwhile,using a fast distance calculation method to avoid multiplication and evolution calculation,the algorithm efficiency is obviously improved.The improved algorithm makes the edge of the interpolation images clear and transit smoothly in medical sequence images,and reduces by 60% time costing compared with traditional algorithm.Results show that the improved algorithm effectively solves the efficiency problem of the traditional algorithm and has a wide application.
出处 《计算机仿真》 CSCD 北大核心 2011年第2期325-328,332,共5页 Computer Simulation
关键词 距离变换 图像插值 欧几里得距离 Distance transform Image interpolation Euclidean distance
  • 相关文献

参考文献7

  • 1T M Lehmann, C Gonner, K Spitzer. Interpolation methods in medical image processing [ J ]. Medical Imaging, IEEE Transactions, 1999,18 ( 11 ) : 1049 - 1075.
  • 2S P Raya, J K Udupa. Shape -based interpolation of multidimensional objects[ J]. Medical Imaging, 1EEE Transactions. 1990,9 (1) :32 -42.
  • 3W C Lin, C C Liang, C T Chen. Dynamic elastic interpolation for 3D medical image reconstruction from serial cross sections [ J]. Medical Imaging, IEEE Transactions. 1988,7 (3) :225 -232.
  • 4毛欣炜,尹学松,邹鹏程,张谦.基于形状的三维图像匹配插值方法[J].计算机仿真,2005,22(3):107-110. 被引量:1
  • 5许为华,尹学松.医学图像插值算法的研究[J].计算机仿真,2006,23(1):111-114. 被引量:9
  • 6刘相滨,邹北骥,孙家广.基于边界跟踪的快速欧氏距离变换算法[J].计算机学报,2006,29(2):317-323. 被引量:36
  • 7C Maple. Geometric design and space planning using the marching squares and marching cube algorithms [ C ]. Geometric Modeling and Graphics, 2003. Proceedings. 2003 International Conference, 2003.90 - 95.

二级参考文献26

  • 1管伟光,马颂德.统一化的快速距离变换[J].计算机学报,1995,18(8):626-635. 被引量:24
  • 2陈崚.完全欧几里德距离变换的最优算法[J].计算机学报,1995,18(8):611-616. 被引量:21
  • 3G J Grevera,J K Udupa.Shape-based interpolation of multidimensional grey-level images[J].IEEE Trans.on Medical Imaging,1996,15(6):881-892.
  • 4G J Grevera,J K Udupa.An objective comparison of 3-D image interpolation methods[J].IEEE Trans.on Medical Imaging,1998,17(4):642-652.
  • 5G J Grevera,J K Udupa.A Task-specific evaluation of three-dimensional image interpolation techniques[J].IEEE Trans.on Medical Imaging,1999,18(2):137-143.
  • 6YING Zhu,C Stuart,T Michael.Wavelet Domain Image Interpolation via Statistical Estimation[J].IEEE Trans Image Processing,2001,22(5):654-667.
  • 7Paglieroni D.W..Distance transforms:Properties and machine vision applications.Graphical Model and Image Processing,1992,54(1):56~74.
  • 8Talukder Ashit et al..Modified binary watershed transform for segmentation of agricultural products.In:Proceedings of SPIE,Boston,MA,USA,1998,3543:53~64.
  • 9Castleman K.R..Digital Image Processing.Photocopy ed.Beijing:Tsinghua University Press,1998,475~477,493~494.
  • 10Milan Sonka,Vaclav Hlavac,Roger Boyle.Image Processing,Analysis,and Machine Vision.Second edition(Photocopy ed.).Beijing:Posts & Telecom Press,2002,584~585.

共引文献42

同被引文献19

  • 1陈灵娜,陈增科.CT断层图像匹配插值算法的研究与实现[J].南华大学学报(自然科学版),2005,19(1):73-75. 被引量:4
  • 2Grevera G J, Udupa J K. An objective comparison of 3D images in-terpolation method [J]. IEEE Trans. Med. Imag. 1998,17 (4):642 - 652.
  • 3Bor G,Kechagias L. Pitas I. Binary morphological shape- based in-terpolation applied to 3 - D tooth reconstruction [J]. IEEE TransMed Imaging, 2002. 21 (2): 100- 108.
  • 4罗述谦,周果宏.医学图像处理与分析[M].北京:科学出版社,2003.
  • 5Kitasaka T, Mori K, Hasegawa J, et al. A Method for Extraction of Bronchus Regions from 3D ChestX-ray CT Images by Analyzing Structural Features of the Bronchus [J]. FORMA, 2002, 12 (17) : 321-338.
  • 6Mori K, Suenaga Y. Automated anatomical labeling of the bronchial branch and its application to the virtual bronchoscopy [J]. IEEE Trans Med Imag- ing, 2000,19(2) : 103-114.
  • 7Yongsup Park. Registration of linear structures in 3-D medical images [C]. Japan, Osaka University, 2013.
  • 8Pisupati C, Wolff L, Mitzner W, et al. Tracking 3-D pulmonary tree structures[J]. Workshop Math- ematical Methods in Biomedical Image Analysis, 1996(57) : 160-169.
  • 9Kitaoka H, Park Y, Tschirren J, et al. Automated Nomenclature Labeling of the Bronchial Tree in 3D-CT Lung Images [J]. MICCAI, 2002, 9 (6) : 25-28.
  • 10Tschirren J, McLennan, Hoffman, et al. Matching and anatomical labeling of human airway tree [J]. IEEE Trans Med Imaging,2005(12):1540-1547.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部