期刊文献+

基于改进卡尔曼滤波的盲图像恢复 被引量:4

Blind image restoration based on improved Kalman filter
下载PDF
导出
摘要 为了解决在获取数字图像过程中发生的图像质量下降(退化)的问题,需要使用图像恢复技术进行图像重建。针对未知点扩散函数(PSF)的盲图像恢复,首先利用倒频谱的方法估计模糊图像的点扩散函数,然后再利用改进的卡尔曼滤波方法对图像进行恢复。倒频谱方法是将模糊图像分成反映原图像信息和反映模糊系统信息的两部分相加的形式,通过分析两者的关系估计出模糊图像的PSF。改进卡尔曼滤波器在估计过程中考虑了系统的模型误差,使其对模型误差具有一定的鲁棒性。通过M atlab进行了数字仿真实验,实验结果表明利用所提出的方法可以有效地减小PSF估计不准确对图像恢复的影响,与传统卡尔曼滤波相比恢复效果较好。 To eliminate or reduce the image degradation, the image restoration techniques are often used. In this paper, a new image restoration way was obtained for blind image. Firstly, the Point Spread Function (PSF) of blurred image was estimated by cepstrum. Secondly, the blurred image was restored by the improved Kalman filter. The cepstrum was the way that the PSF of blurred image could be obtained through analyzing the relationship between two parts. One reflected original image, and the other reflected blurred system. The improved Kalman filter took account of the model error of system during the process of estimation. Some digital simulation experiments were done through Matlab. The results using the improved Kalman filter algorithm based on estimated PSF indicate that the proposed method effectively eliminates the impact caused by inaccurate PSF and it has better effects than Kalman filter.
出处 《计算机应用》 CSCD 北大核心 2011年第3期711-714,共4页 journal of Computer Applications
基金 航空科学基金资助项目(2008ZC53030)
关键词 盲图像恢复 点扩散函数 改进卡尔曼滤波 倒频谱 blind image restoration Point Spread Function (PSF) improved Kalman filter cepstrum
  • 相关文献

参考文献9

  • 1沈峘,李舜酩,毛建国,辛江慧.数字图像复原技术综述[J].中国图象图形学报,2009,14(9):1764-1775. 被引量:44
  • 2LEUNG C M, LU W S. A two-phase blind restoration algorithm [ C]// Proceedings of the 1993 Conference on Electrical and Com- puter Engineering. Washington, DC: IEEE Computer Society, 1993:1029 - 1032.
  • 3KANG XIUMEI, PENG QINGJIN, THOMAS G, et al. Blind image restoration using the cepstrum method [ C]// CCECE'06: Canadian Conference on Electrical and Computer Engineering. Washington, DC: IEEE Computer Society, 2006:1952 - 1955.
  • 4WOODS J W, RADEWAN C H. Kalman filter in two dimensions [J]. IEEE Transactions on Information Theory, 1977, 23(4): 473 - 482.
  • 5WOODS J W, INGLE V K. Kalman filler in two dimensions: Fur- ther results [ J]. IEEE Transactions on Acoustics, Speech, and Sig- nal Processing, 1981, 29(2) : 188 - 197.
  • 6EKSTROM M P, WOODS J W. Two-dimension spectral factorization with applications in recursive digital filter [ J]. IEEE Transactions on A- coustics, Speech, and Signal Processing, 1976, 24(2): 115-128.
  • 7KUNDAR D, HATZINAKOS D. Blind image deconvolution [ J]. IEEE Signal Processing Magazine, 1996, 13(6) : 43 -64.
  • 8YANG FUWEN, WANG ZIDONG, HUNG Y S. Robust Kalman fil- tering for discrete time-varying uncertain systems with muhiplicative noises [ J]. IEEE Transactions on Automatic Control, 2002, 47(7) : 1179 - 1183.
  • 9张必银,张天序,刘纯胜.图像恢复算法目标获取有效性的评估方法[J].红外与激光工程,2008,37(1):151-155. 被引量:3

二级参考文献101

  • 1洪汉玉,张天序,易新建.气动光学效应红外序列退化图像优化复原算法[J].红外与激光工程,2005,34(6):724-728. 被引量:5
  • 2涂娇姣,洪汉玉,张天序.保边缘的递归逆滤波盲目图像复原算法[J].计算机与数字工程,2006,34(12):4-6. 被引量:1
  • 3Banham M R, Katsaggelos A K. Digital image restoration [ J]. Signal Processing, 1997, 14(2) : 24-41.
  • 4Robbins G M, Huang T S. Inverse filtering for linear shift-variant imaging systems [ J ]. Proceedings of IEEE, 1972, 60 (7) : 862-872.
  • 5Brigham E O, Smith H W, Bostick F X, et al. An iterative technique for determining inverse filters [ J]. IEEE Transactions on Geoscience Electronics, 1968, 6(2) :86-96.
  • 6Springer T, Torres J, Pearce J A, et al. Restoration of thermographic images using iterative inverse filtering [ J]. Engineering in Medicine and Biology Society, 1989, 2 (2) : 365-366.
  • 7Chottera A, Jullien G. Recursive digital filters in image processing [ A ]. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing [C], Tulsa, OK, USA, 1978: 757-760.
  • 8Hsiao C C, Chi C Y. Image modeling and restoration by higher-order statistics based inverse filters [ A ]. In: Proceedings of IEEE Seventh SP Workshop on Statistical Signal and Array Processing [ C ], Quebec, Canada, 1994, 203-206.
  • 9Chi C Y, Wu M C. A unified class of inverse filter criteria using two cumulants for blind deconvolution and equalization [ A ]. In: Conference on ICASSP- 95 [ C ] , Detroit, MI, USA , 1995, 3: 1960-1963.
  • 10Galatsanos N P,Katsaggelos A K. Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation [J]. IEEE Transactions on Image Processing, 1992, 1(3) :322-336.

共引文献45

同被引文献32

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部