期刊文献+

基于Q-relief的图像特征选择算法 被引量:8

Image feature selection algorithm based on Q-relief
下载PDF
导出
摘要 针对特征选择算法——relief在训练个别属性权值时的盲目性缺点,提出了一种基于自适应划分实例集的新算法——Q-relief,该算法改正了原算法属性选择时的盲目性缺点,选择出表达图像信息最优的特征子集来进行模式识别。将该算法应用于列车运行故障动态图像监测系统(TFDS)的故障识别,经实验验证,与其他算法相比,Q-relief算法明显提高了故障图像识别的准确率。 Image feature selection is the significant part in pattern recognition, image understanding and so on. The relief algorithm has a blind deficiency in training feature weight, Q-relief was a new algorithm which was based on dividing instance set in self-adapting. Q-relief was proposed to solve the blind selection problem in the original relief algorithm. The presented algorithm was applied in Trouble of Moving Freight Car Detection System (TFDS). The classification results show that the Q- relief algorithm can improve the accuracy of recognition compared with other algorithms.
出处 《计算机应用》 CSCD 北大核心 2011年第3期724-728,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(60574098) 河南省教育厅自然科学基金资助项目(2010A510014) 郑州市科技攻关项目(0910SGYG25229-6)
关键词 特征选择 RELIEF算法 纹理特征 模式识别 feature selection relief algorithm texture feature pattern recognition
  • 相关文献

参考文献13

  • 1SCHERWANI K, ALl N, LOTIA N. A computational economy based job scheduling system for clusters [ J]. Software Practice and Experience, 2004, 34(6): 581-598.
  • 2KANG O-H, KANG S S. A Web-based toolkit for scheduling simu- lation using GridSim [ C]//GCC'06: Proceedings of the Fifth Inter- national Conference on Grid and Cooperative Computing. Changsha, China: IEEE, 2006:256-271.
  • 3SWINIARSKI R W, SKOWRON A. Rough set methods in feature selection and recognition [ J]. Pattern Recognition Letters, 2003, 24(6) : 833 -849.
  • 4KIRA K, RENDELL L A. A practical approach to feature selection [ C]// Proceedings of the 9th International Workshop on Machine Learning. Washington, DC: [ s. n. ], 1992:249 -256.
  • 5ZHANG JIANJIE, LIN HAO, ZHAO MINGGUO. A fast algorithm for hand gesture recognition using relief [ C]// ICNC 2009: Pro- ceedings of the Sixth International Conference on Fuzzy Systems and Knowledge Discovery. Washington, DC: IEEE Computer Society, 2009:8 - 13.
  • 6吴浩苗,尹中航,孙富春.Relief算法在笔迹识别中的应用[J].计算机应用,2006,26(1):174-176. 被引量:18
  • 7KONONENKO I. Estimating attributes: Analysis and extensions of RELIEF [ C]//ECML-94: Proceedings of the 1994 European Con- ference on Machine Learning, LNCS 784. Berlin: Springer, 1994: 171 - 182.
  • 8ROBNIK-SIKONJA M, KONONENKO I. Theoretical and empirical analysis of ReliefF and RReliefF [ J]. Machine Learning, 2003, 53 (1/2): 23-69.
  • 9SUN YI-JUN. Iterative relief for feature weighting algorithms, theo- ries, and applications [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6) : 1035 - 1051.
  • 10李颖新,李建更,阮晓钢.肿瘤基因表达谱分类特征基因选取问题及分析方法研究[J].计算机学报,2006,29(2):324-330. 被引量:45

二级参考文献21

  • 1Lander E.S..Array of hope.Nature Genetics,1999,21(Supplement 1):3~4.
  • 2Ramaswamy S.,Golub T.R..DNA microarrays in clinical oncology.Journal of Clinical Oncology,2002,20 (7):1932 ~1941.
  • 3Ramaswamy S.,Tamayo P.,Rifkin R.et al..Multiclass cancer diagnosis using tumor gene expression signatures.Proceedings of the National Academy of Sciences of the United States of America,2001,98(26):15149~15154.
  • 4Golub T.R.,Slonim D.K.,Tamayo P.et al..Molecular classification of cancer:Class discovery and class prediction by gene expression monitoring.Science,1999,(5439):531~537.
  • 5Hedenfalk I.,Duggan D.,Chen Y.et al..Gene-expression profiles in hereditary breast cancer.New England Journal of Medicine,2001,344(8):529~548.
  • 6Li X.,Rao S.,Zhang T.et al..An ensemble method for gene discovery based on DNA microarray data.Science in China(Series C),2004,47(5):396~405.
  • 7Tibshirani R.,Hastie T.,Narasimhan B.et al..Diagnosis of multiple cancer types by shrunken centroids of gene expression.Proceedings of the National Academy of Sciences of the United States of America,2002,99(10):6567~6572.
  • 8Khan J.,Wei J.S.,Ringner M.et al..Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks.Nature Medicine,2001,7(6):673~679.
  • 9Guyon I.,Weston J.,Barnhill S.et al..Gene selection for cancer classification using support vector machines.Machine Learning,2000,46(13):389~422.
  • 10Kira K.,Rendell L.A..The feature selection problem:Traditional methods and a new algorithm.In:Swartout W.ed..Proceedings of the 10th National Conference on Artificial Intelligence.Cambridge,MA:AAAI Press/The MIT Press,1992,129~134.

共引文献61

同被引文献77

引证文献8

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部