期刊文献+

基于迭代的PROPELLER MRI重建算法 被引量:1

Iterative reconstruction method for PROPELLER MRI
原文传递
导出
摘要 PROPELLER是磁共振成像中能有效消除运动伪影的一种新的采集技术。对于PROPELLER的重建,传统的卷积网格方法由于需要优化大量参数和采样密度补偿过程,重建图像的质量很难得到保证。本文提出使用迭代重建的方法进行PROPLLER的重建,通过加权预条件共轭梯度算法,迭代最小化代价函数,从而得到重建图像。为了提高速度,在每步迭代中,使用NUFFT计算矩阵-向量乘法。通过仿真数据和实际扫描数据比较验证,迭代算法相比卷积网格化方法提高了重建图像信噪比,消除了振铃伪影,并提高了图像的均匀性。 PROPELLER( periodically rotated overlapping parallel lines with enhanced reconstruction) is a new acquisition technique which can efficiently reduce motion artifacts in MRI imaging. Convolution gridding method usually necessitates lots of parameters optimization and a sampling density compensation step, so the quality of the reconstructed image cannot be ensured. In the paper, an iterative method is applied to reconstruct images for PROPELLER MRI. In the method, a cost function is iteratively minimized by using weighted pre-conditioned conjugate gradient algorithm. In order to improve computation, NUFFT (nonuniform fast Fourier transformation ) is used to computing matrix-vector multiplication. Experimental comparison was made by using both digital phantom data and experimental PROPELLER imaging data. The results showed that the iterative method can improve signal to noise ratio of images and reduce ring artifacts of images in comparison with convolution gridding method. The homogeneity of images can be improved as well.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第2期179-184,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(50877008)
关键词 磁共振 卷积网格 PROPELLER 迭代方法 magnetic resonance imaging convolution gridding PROPELLER iterative method
  • 相关文献

参考文献12

  • 1Dold C, Zaitsev M, Speck O, et al. Prospective head motion compensation for MRI by updating the gradients and radio[ C ]//International Conference on Medical Image Computing and Computer Assisted Intervention. San Jose, CA, USA: Lecture Notes on Computer Science, 2005:482-489.
  • 2General Leung, Plewes D B. Retrospective motion compensation using variable-density spiral trajectories[ J]. Journal of Magnetic Resonance Imaging, 2005, 22(3) :373-380.
  • 3Pipe J G. Motion correction with PROPELLER MRI :application to head motion and free-breathing cardiac imaging[ J]. Magnetic Resonance in Medicine, 1999, 42 (5):963-969.
  • 4Jackson J I, Meyer C H, Nishimura D G, et al. Selection of a convolution function for fourier inversion using gridding [ J ]. IEEE Transactions on Medical Imaging, 1991, 10 (3) : 473- 478.
  • 5Sedarat H, Nishimura D G. On the optimality of the gridding reconstruction algorithm [ J ]. IEEE Transactions on Medical Imaging, 2000,19(4) :306-17.
  • 6Wajer F T A W, Lethmate R, van from arbitrary to cartesian sample Proceedings of the ProRISC/tEEE Netherlands: IEEE Benelux, 2000 : Osch J, et al. Interpolation positions: Gridding [ C ]// Workshop. Veldhoven, the 571-577.
  • 7Pipe J G, Menon P. Sampling density compensation in MRI: Rationale and an iterative numerical solution [ J ]. Magnetic Resonance in Medicine, 1999, 41 ( 1 ) : 179-186.
  • 8Rasche V, Proksa R, Bornert R S P, et al. Resampling of data between arbitrary grids using convolution interpolation [ J]. IEEE Transactions on Medical Imaging, 1999,18 (5) :385-392.
  • 9Sutton B P, Noll D, Fessler J A. Fast, iterative image reconstruction for MRI in the presence of field inhomogeneities [J]. IEEE Transactions on Medical Imaging, 2003, 22 (2) : 178-188.
  • 10Haacke E M, Brown R W, Thompson M R, et al. MRI: Physical Principles and Sequence Design [ M ]. New York : John Wiley and Sons, 1999.

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部