期刊文献+

彩色图像色度距离权值的图论分割算法 被引量:15

The algorithm of graph cut using HSI weights in color image segmentation
原文传递
导出
摘要 提出利用色度距离特征权重的图论分割算法,对彩色图像进行区域分割分析。利用图论和HSI模型,解决自然灾害图像的分割问题。针对复杂的自然图像,将图像像素转换为图论中的节点,构造基于像素点HSI模型的带权无向图;构建带权无向图的图论分割权函数及分割准则,形成区域相似度判别方法;结合实际分割需求,对图论分割后的离散区域进行二次吸收与合并运算,获取连续兴趣区域;对分割的结果与其他算法进行了比较与分析。 Segmenting natural image into regions is concerned as an essential issue in computer vision. In this paper, a new weighted graph-cut algorithm which uses HSI color model is presented to solve a natural disaster image segmentation problem. Using graph theory, the color image is firstly translated into weighted graph by mapping each pixel into graph node. Weighted function is defined by combining HSI color and pixel distance factors, and Cut criterion is suggested by using region internal differences and region external similarity. The experimental result is provided to show the effectiveness of the algorithm, and the comparison with other methods results are also given in detail.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第2期221-226,共6页 Journal of Image and Graphics
基金 国家科技支撑计划项目(2006BAD20B02) 北京市自然科学基金项目(4081002)
关键词 图论理论 图像分割 色度距离 graph theory image segmentation HSI distance
  • 相关文献

参考文献26

  • 1Noble J A, Boukerroui D. Ultrasound image segmentation: a survey [ J ]. IEEE Transactions on Medical hnaging, 2006, 25(8) : 987-1010.
  • 2Luccheseyz L, Mitray S K. Color image segmentation: a state-of- the-art survey [ J ]. Image Processing, Vision, and Pattern Recognition, 2001. 67(2): 207-221.
  • 3Comaniciu D, Meer P. Robust analysis of feature spaces: color image segmentation [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico: IEEE Computer Society, 1997:750-755.
  • 4Cooper M C. The tractability of segmentation and scene analysis [J]. International Journal of Computer Vision, 1998, 30 ( 1 ) : 27 -42.
  • 5Urquhart R. Graph theoretical clustering based on limited neighborhood sets [ J]. Pattern Recognition, 1982, 15 (3) : 173- 187.
  • 6Shi J, Malik J. Normalized cuts and image segmentation[ C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. San Juan, Puerto Rico: IEEE Computer Society, 1997:731-737.
  • 7Wu Z, Leahy R. An optimal graph theoretic approach to data clustering: theory and its application to image segmentation [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11) :1101-1113.
  • 8Weiss Y. Segmentation using eigenvectors: a unifying view [ C ]//Proceedings of the IEEE International Conference on Computer Vision, Kerkyra, Greece: IEEE Computer Society, vol. 2, 1999:975-982.
  • 9Comaniciu D, Meer P. Mean shift analysis and applications[ C ] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, NY, USA : IEEE Computer Society, 1999 : 1197-1203.
  • 10Ng Huifuang. Automatic thresholding for defect detection [ J].Pattern Recognition Letters, 2006, 27 (14) : 1644-1649.

二级参考文献21

  • 1Xu C,IEEE Trans Image Processing,1998年,7卷,3期,359页
  • 2Amini A A,IEEE Transactions Medical Imaging,1998年,17卷,3期,344页
  • 3Jolly M P D,IEEE Transactions on Pattern Analysis and Machine Intelligence,1996年,18卷,3期,293页
  • 4Jain A K,IEEE Transactions Pattern Analysisand Machine Intelligence,1996年,18卷,3期,267页
  • 5Lai K F,IEEE Transactions Pattern Analysis Machine Intelligence,1995年,17卷,11期,1084页
  • 6Cohen L D,CVGIP:Image Understanding,1991年,53卷,2期,211页
  • 7Cohen L D,Proceedings of the 3rd International Conference on Computer Vision,1990年,587页
  • 8K R Castleman. Digital Image Processing[M]. 2nd Edition, Prentice- Hall, 2002.
  • 9T Zheng, L Xiaobin, J Yanwen. Spectral clustering based on matrix perturbation theory[J]. Science in China Series F Information Science,2007,50(1) :63 - 81.
  • 10L Xiaobin, T Zheng. Multiscale stochastic hierachical image segmentation by spectral clustering[ J]. Science in China Series F Information Science, 2007,50(2) : 198 - 211.

共引文献132

同被引文献194

引证文献15

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部