期刊文献+

基于轮廓特征及扩展Kalman滤波的车辆跟踪方法研究 被引量:17

Tracking method based on contour feature of vehicles and extended Kalman filter
原文传递
导出
摘要 在车辆实时跟踪中,基于Kalman滤波的方法是常用的有效方法,但因车辆检测时常将靠近的物体检测成一个目标引起误检现象,这会使在目标匹配时产生错误。为此,首先考察运动区域的长宽比和占空比,进行误检判断;然后提出了一种基于轮廓特征拐点的车辆分割方法;最后引入基于扩展Kalman滤波的跟踪模型。实验结果表明,采用的误检判断准则对多车辆的检测区域有较高的识别率,提出的基于轮廓特征拐点的车辆分割方法可实现重叠遮挡车辆的准确完整分割,用基于扩展Kalman滤波的跟踪模型实现了车辆的实时跟踪。 For real-time tracking of moving vehicles, the general and efficient method is based on Kalman filter. However, the false detection often exists when more than one objects approaches with each other. It causes error in target matching process. To overcome the above problem, this paper first considers the width/height ratio and occupancy ratio to make false detection judgment. Then a new moving vehicle segmentation algorithm based on feature points on contour is presented. Lastly, the tracking model based on extended Kalman filter is implemented. Experimental results demonstrate that the rule can recognize false detection quite accurately. The proposed vehicles segmentation method can segment the overlapped ones accurately and completely, and finally the tracking model based on extended Kalman filter is implemented to realize the real-time tracking.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第2期267-272,共6页 Journal of Image and Graphics
基金 科技部国际合作重点项目(2008DFA11030) 国家自然科学基金项目(60872099) 山东省重点自然科学基金项目(Z2007G06)
关键词 物体分割 特征点 扩展Kalman滤波 车辆跟踪 object segmentation feature point extended Kalman filter vehicle tracking
  • 相关文献

参考文献14

  • 1Koller D, Daniilidis K, Nagel H H. Model-based object tracking in monocular image sequences of road traffic scenes [ J ]. International Journal of Computer Vision, 1993, 10(3) : 257-281.
  • 2Kilger M. A shadow handler in a video-based real-time traffic monitoring system [ C ]// Proceedings of the IEEE Workshop on Applications of Computer Vision. CA: Palm Springs, 1992: 11-18.
  • 3Roya R, Mansour J. Real-time classification and tracking of multiple vehicles in highways [ J ]. Pattern Recognition Letters, 2005, 26 (10) : 1597-1607.
  • 4Beymer D, McLauchlan P, Coifman B, et al. A real-time computer vision system for measuring traffic parameters [ C ]// Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos, Calif: IEEE Computer Society Press, 1997: 495-501.
  • 5Iannizzotto G, Vita L. Real-time object tracking with models and affine transformations [ C ]// Proceedings of International Conference on Image Processing. Vancouver, BC, Canada: IEEE Computer Society, 2000: 316-318.
  • 6Baumberg A M, Hogg D C. An efficient method for contour tracking using active shape models [ C ]// Proceedings of the Second IEEE Workshop on Applications of Computer Vision. Sarasota, Florida: IEEE, 1994:194-199.
  • 7Blake A, Isard M. Active Contours [ M ]. Berlin: Springer, 1998.
  • 8Kass M, Witkin A, Terzopoulos D. Snakes: active contour models [J].International Journal of Computer Vision, 1988, 1(3) : 163-169.
  • 9Terzopoulos D, Szeliski R. Tracking with Kalman snakes [ M ]. Cambridge, MA: MIT Press, 1992: 3-20.
  • 10Vieren C, Cabestaing F, Postaire J G. Catching moving objects with snakes for motion tracking[J]. Pattern Recognition Letters, 1995, 16 (7) : 679-685.

同被引文献165

引证文献17

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部