期刊文献+

基于感兴趣点特征的彩色图像目标分类与识别 被引量:2

Chromatic image classification and recognition based on interest point features
下载PDF
导出
摘要 提出一种基于赋色尺度不变特征变换的特征提取方法,分析证明了该特征对平移、旋转、缩放、颜色漂移等因素的不变性。进而研究了基于该特征的彩色图像目标分类与识别的策略和实现技术,提出了相应的算法。通过运用阿姆斯特丹目标图片库中随机选择的50类对象进行分类识别的实验检验,识别正确率可达到100%。理论分析和实验结果表明,赋色尺度不变特征在彩色图像的分类识别中展示出优越的性能。 The color scale-invariant feature transform(color SIFT) based feature extraction method is proposed,and the related invariance properties in translation,rotation,zooming,and color shifting are analyzed.Further,image classification strategy and algorithms based on this feature are studied.To test the proposed classification and recognition algorithms,50 objects categories randomly chosen from the Amsterdam library of object images(ALOI) are employed for recognition,and results show that the correct rate of recognition is 100%.Both theoretical and experimental results validate that the color SIFT feature has a good performance in chromatic image classification and recognition.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2011年第2期438-442,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(60875072) 国家高技术研究发展计划(863计划)项目(2008AA12A200) 国际科技合作项目(2007DFA11530)资助课题
关键词 机器视觉 模式识别 特征提取 不变性 赋色尺度不变特征变换 machine vision pattern recognition feature extraction invariance property color scale-invariant feature transform(color SIFT)
  • 相关文献

参考文献13

  • 1Gevers T, Van de Weijer J, Stokman H. Color image processing methods and applications : color Jeature detection : an overview[M]. Boca Raton: CRC Press, 2006:203 - 226.
  • 2Mikolajczyk K, Schmid C. Performance evaluation of local descriptors[J].IEEE Trans. on Pattern Analysis and Machine Intelligence ,2005,27(10) : 1615 - 1630.
  • 3Herbert B, Tinne T, Van G L. SURF: Speeded up robust features[C]//Proc, of the 9th European Conference on Computer Vision, 2006:404 417.
  • 4Lowe G D. Distinctive image features from scale invariant key points[J].Internation Journal of Computer Vision, 2004, 2(60) :91- 110.
  • 5高健,黄心汉,彭刚,王敏,吴祖玉.一种简化的SIFT图像特征点提取算法[J].计算机应用研究,2008,25(7):2213-2215. 被引量:31
  • 6周志强,汪渤,杨杰,吕冀.基于局部尺度不变特征的快速目标识别[J].光学技术,2008,34(5):742-745. 被引量:4
  • 7Abdel- Hakim E A, Farag A A. CSIFT: a SIFT descriptor with color invariant characteristics[C]//Proc, of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006:1978-1983.
  • 8Von Kries J. Influence of adaptation on the effects produced by luminous stimuli[M]. Cambridge:MIT Press,1970:125 - 130.
  • 9Finlayson G D, Hordley S D, Xu R. Convex programming col our constancy with a diagonal-offsel model[C]//Proc. of IEEE International Conference on Image Processing, 2005 : 948 - 951.
  • 10Gonzalez C R, Woods E R. Digital image processing [M]. Beijing, Publishing House of Electronics Induslry, 2008: 237 - 238.

二级参考文献22

  • 1郭继东,向辉.一个基本矩阵的鲁棒估计算法[J].计算机应用,2005,25(12):2845-2848. 被引量:5
  • 2HARRIS C, STEPHENS M. A combined corner and edge detector [ C]// Proc of the 4th Alvey Vision Conference. Manchester: [ s. n. ], 1988: 147-151.
  • 3MIKOLAJCZYK K, SCHMID C. Indexing based on scale invariant interest points [ C ]// Proc of the 8th International Conference on Computer Vision. Vancouver: [ s. n. ] , 2001 : 525-531.
  • 4CARNEIRO G, JEPSON A D. Multi-scale phase-based local features [ C]// Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2003: 736-743.
  • 5JOHANSSON B, MOE A. Patch-duplets for object recognition and pose estimation[ C]//Proc of the 2nd Canadian Conference on Computer and Robot Vision. 2005: 9-16.
  • 6LOWED G. Distinctive image features from scale invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2): 91-110.
  • 7BROWN M, LOWED G. Recognising panoramas [ C]// Proc of the 9th International Conference on Computer Vision. Nice: [ s. n. ], 2003 : 1218-1225.
  • 8SE S, LOWED G, LITTLE J J. Vision-based global localization and mapping for mobile robots [ J]. IEEE Trans on Robotics, 2005,21 (3) : 364-375.
  • 9LINDEBERG T. Feature detection with automatic scale selection [ J ]. International Journal of Computer Vision, 1998, 30 (2) : 79-116.
  • 10GAO Jian, HUANG Xin-han, PENG Gang, et al. A quick feature detecting method applied in robot vision [ C ]//Proc of IEEE International Conference on Mechatronics and Automation. Haerbin: [ s. n. ], 2007 : 736-743.

共引文献33

同被引文献23

  • 1KAEMARUNGSI K, KRISHNAMURTHY P. Modeling of indoor positioning systems based on location fingerprinting[A]. INFOCOM 2004[C]. 2004.1012-1022.
  • 2JASPREET S, UPAMANYU M, RAJESH K. Tracking multiple tar- gets using binary proximity sensors[A]. IPSN 2007[C]. Cambridge, Massachusetts, USA, 2007. 529-538.
  • 3SHRIVASTAVA N, MUDUMBAI R, MADHOW U. Target tracking with binary proximity sensors[J]. ACM Transactions on Sensor Net- works, 2009, 5(4): 1-33.
  • 4FANG Q, ZHAO F, GUIBAS L. Lightweight sensing and communi- cation protocols for target enumeration and aggregation[A]. MobiHoc 2003[C]. Annapolis, Maryland, USA, 2003. 165-176.
  • 5MENG J, LI H, HAN Z. Sparse event detection in wireless sensor networks using compressive sensing[A]. The 43rd Annual Conference on Information Sciences and Systems (CISS)[C]. Baltimore, Maryland, USA, 2009. 181-185.
  • 6ZHANG B W, CHENG X Z, ZHANG N. Sparse target counting andlocalization in sensor networks based on compressive sensing[A]. INFOCOM 2011 [C]. Shanghai, China, 2011. 2255-2263.
  • 7BARYSHNIKOV Y, GHRIST R. Target enumeration via integration over planar sensor networks[A]. Robotics Science and Systems Con- ference[C]. Zurich, Switzerland, 2008. 1-9.
  • 8BARYSHNIKOV Y, GHRIST R. Target enumeration via euler char- acteristic integrals[J]. SIAM Journal on Applied Mathematics, 2009, 70(3): 825-844.
  • 9SHUO G, TIAN H, MOHAMED F M. On accurate and efficient statistical counting in sensor-based surveillance systems[J]. IEEE Per- vasive and Mobile Computing, 2010, 6(1): 74-92.
  • 10SORABH G, RAJESH K, SUBHASH S. Target counting under mini- mal sensing: complexity and approximations[A]. ALGOSENSORS 2008[C]. Reykjavik, Iceland, 2008.30-42.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部