期刊文献+

采用SRM准则对RLS-FIR滤波器的改进

Improved RLS Filters Based on Structural Risk Minimum Principle
下载PDF
导出
摘要 针对自适应FIR滤波器在非平稳条件下跟踪性能差的问题,提出采用结构风险最小化(SRM)准则来改进FIR滤波器的方法,并进行了分析和仿真实验。仿真结果表明:在平稳条件下,采用SRM准则的FIR滤波器收敛于Wiener最优解;在非平稳条件下,采用SRM准则的FIR滤波器跟踪性能大幅提高,优于自适应递推最小二乘(RLS-FIR)滤波器。 To solve the problem that the tracking performance of adaptive FIR filter is poor under nonstationary condition, the method to improve FIR filter based on structural risk minimum (SRM) principle is presented in this paper. Simulation results show that on condition of stationary signals, SRM-based filter converges to Wiener optimal solution, and on condition of nonstationary signals, SRM-based filter significantly improves the tracking performance and is better than adaptive recursive least squares FIR(RLS- FIR) filter.
出处 《电讯技术》 北大核心 2011年第2期40-45,共6页 Telecommunication Engineering
基金 国家自然科学基金资助项目(60772056) 中国博士后科学基金资助项目(20070421094)~~
关键词 无线通信 自适应滤波器 非平稳条件 结构风险最小化 跟踪性能 wireless communication adaptive filter nonstationary condition structure risk minimum (SRM) tracking performance
  • 相关文献

参考文献15

  • 1Haykin S. Adaptive filter theory[ M]. 4th ed. NJ, US: Pearson Education Inc., 2002.
  • 2FANG Yangwang, JIAO Licheng, ZHANG Xianda, et al. On the convergence of volterra filter equalizers using a Pth - order inverse approach [ J ]. IEEE Transactions on Signal Processing, 2001, 49(8): 1734-1744.
  • 3Yee M S, Yeap B L, Hanzo L. Radial basis function- assisted turbo equalization[ J]. IEEE Transactions on Communications, 2003,4 (51 ) : 664 - 675.
  • 4WANG Lixin, Mendel J M. Fuzzy adaptive filters, with application to nonlinear channel equalization[ J]. IEEE Transactions on Fuzzy System, 1993, 1(3): 161 - 170.
  • 5Sebald D J, Bucklew J A. Support vector machine techniques for nonlinear equalization[ J]. IEEE Transactions on Signal Processing, 2000, 48(10) : 3217 - 3226.
  • 6Sayed A H, Kailath T. A state-space approach to adaptive RLS filtering[J], IEEE Signal Processing Magazine, 1994, 11(3): 18-60.
  • 7VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 8Chen S, Gunn S, Harris C J. Decision feedback equalizer design using support vector machines[J]. IEE Vision, Image, Signal Processing, 2000, 147(3): 213-219.
  • 9Albu F, Martinez D. The application of support vector machines with Gaussian kernels for overcoming co - channel interference[C]// Proceedings of the 1999 IEEE Signal Processing Society Workshop. Madison, WI: IEEE, 1999:49 - 57.
  • 10Chen S, Samingan A K, Hanzo L. Support vector machine multiuser receiver for DS - CDMA signals in mulfipath channels[J]. IEEE Transactions on Neural Networks, 2001, 12 (5): 604- 611.

二级参考文献9

  • 1梁启联,周正.基于多层神经网络的盲均衡算法[J].北京邮电大学学报,1996,19(3):27-32. 被引量:12
  • 2Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 3Sato Y. A method of self-recovering equalization for multilevel amplitude modulation systems[J]. IEEE Trans on Communications, 1975, 23(5): 579-582.
  • 4Godard D. Self-recovering equalization and carriertracking in two-dimenslonal data communication system [J]. IEEE Trans on Communications, 1980, 28 (12). 1867-1875.
  • 5Giannakis G B, Mendel J. Identification of non-minimum phase systems using higher-order statistics [J ]. IEEE Trans on ASSP, 1989, 37(3): 360-377.
  • 6Zhou Y, Leung H, Yip P, et al. Blind identification of multi-channel FIR systems based on linear prediction[J]. IEEE Trans on Signal Processing, 2000, 48(9): 214- 218.
  • 7Fang Yangwang, Jiao Licheng, Zhang Xianda, et al. On the convergence of volterra filter equalizers using a Pthorder inverse approach[J]. IEEE Trans on SP, 2001, 49 (8) : 1734-1744.
  • 8Liu R W, Dong Guojie. A fundamental theorem for multiple-channel blind equalization [J ]. IEEE Trans on Circuits and Systems-Ⅰ : Fundamental Theory and Applications, 1997, 44(5): 472-473.
  • 9Haykin S. Adaptive filter theory [M]. 4th ed. Pearson Education Inc, 2002: 637-641.

共引文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部