期刊文献+

面向主题挖掘与观点分析的博客知识挖掘

下载PDF
导出
摘要 Blog是Web2.0环境下用户自创内容的重要形式,已经成为互联网上一种重要的信息源和知识源。如何快速、准确地获得Blog信息及隐藏在信息中的知识是人们的迫切需要。本文构建了一个Blog知识挖掘框架,该框架基于文本聚类和主题模型两种文本分析方法,挖掘Blog日志中潜在的概念主题,并对所挖掘的概念主题进行观点分析,这将有助于对于领域知识的深层次研究。笔者应用该方法以e-Learning Blog日志为研究对象,进行了实例研究。
作者 王萍
出处 《中国电化教育》 CSSCI 北大核心 2011年第2期125-129,共5页 China Educational Technology
基金 上海市教育科学研究项目"网络学习支持的有效性研究"(项目编号:B2609105)的阶段性研究成果
  • 相关文献

参考文献7

  • 1Lakshmanan, G. T., Oberhofer, M. A. Knowledge Discovery in the Blogosphere: Approaches and ChallengesP[J].IEEE Internet Computing, 2010, 14(2): 24-32.
  • 2Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P. From data mining to knowledge discovery: An Overview[DB/OL]. http://www.daedalus.es/fileadmin/daedalus/doc/MineriaDeDatos/fayyad96.pdf.
  • 3李纲,程洋洋,寇广增.句子情感分析及其关键问题[J].图书情报工作,2010,54(11):104-107. 被引量:16
  • 4Efimova, L. Weblog as a Personal Thinking Space[DB/OL]. http:// blog.mathemagenic.c om/ 2OO9 / O6 / l O /web log-as-a-personal- thinking-space/.
  • 5王萍.面向教育技术学文献数据的主题挖掘[J].现代教育技术,2009,19(5):46-50. 被引量:5
  • 6Zhao, Y., Karypis, G. Criterion Functions for Document Clustering: Experiments and Analysis[K]. Tech report# 01-040, University of Minnesota, 2001.
  • 7陈明溥,庄良宝.全球资讯网学习环境中学习活动型态与学习成效之探讨[R].台湾网际网路研讨会,1999.

二级参考文献27

  • 1徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:123
  • 2Thomas Hofmann.Probabilistic Latent Semantic Indexing[C].Proceedings of the 22nd ACM SIGIR International Conference on Research and Development in Information Retrieval,1999:50-57.
  • 3David M.Blei,Andrew Y.Ng,Michael I.Jordan.Latent Dirichlet Allocation.Journal of Machine Learning Research[J],2003,3:993-1022.
  • 4Mark Steyvers,Padhraic Smyth,Michal Rosen-Zvi,et al.Probabilistic Author-Topic Models for Information Discovery[C].Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2004:306-315.
  • 5Wei Li,Andrew McCallum.Pachinko Allocation:DAG-Structured Mixture Models of Topic Correlations[C].Proceedings of the 23rd International Conference on Machine Learning,2006:577-584.
  • 6X.Wang,Andrew McCallum.Topics over Time:a Non-Markov Continuons-time Model of Topical Trends[C].Proceedings of the.12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2006:424-433.
  • 7Thomas L.Griffiths,Mark Steyvers.Finding Scientific Topics[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(Suppl.1):5228-5235.
  • 8Ingwer Borg,Patrick Groenen.Modem Multidimensional Scaling:Theory and Applications (2nd Edition)[M].Springer-Verlag,New York,2005.
  • 9Kim S M, Hovy E. Determining the sentiment of opinions//Proceedings of the 20th International Conference on CL. Morristown: ACL, 2004:1367 - 1373.
  • 10Hu Minqing, Liu Bing. Mining and summarizing customer reviews//Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. New York: ACM, 2004:168-177.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部