期刊文献+

n-李代数的Hypo-幂零理想 被引量:3

Hypo-Nilpotent ideals of n-Lie algebras
下载PDF
导出
摘要 研究n-李代数的Hypo-幂零理想,及具有5维极大Hypo-幂零理想的所有可解3-李代数的结构。证明可解非幂零n-李代数一定存在Hypo-幂零理想,且其幂零根基的余维数等于1。给出可解非幂零3-李代数的极大Hypo-幂零理想与3-李代数的维数关系。对具有一类特殊5-维极大次幂零理想的可解3-李代数的每一类3-李代数,分别研究了其导代数维数序列DS及下降中心维数序列CS,及他们之间的关系。 The Hypo-nilpotent ideals of n-Lie algebras and the algebraic structure of solvable 3-Lie algebras which have a 5 dimensional Hypo-nilpotent ideal N are mainly concerned. It is proven that there exist Hypo-nilpotent ideals for the solvable non-nilpotent n-Lie algebras, and the co-dimension of the nilpotent radical is one. The dimensional relations between the maximal Hypo-nilpotent ideals of solvable non-nilpotent 3-Lie algebras and 3-Lie algebras are offered. For a class of 3-Lie algebras which have special a 5 dimensional nilpotent ideal, the dimension sequence DS of derivative algebras and the decreased center the dimension sequence CS and their relations are considered.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2011年第1期4-7,共4页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(10871192) 河北省自然科学基金资助项目(A2010000194)
关键词 N-李代数 Hypo-幂零理想 可解3-李代数 n-Lie algebra Hypo-nilpotent ideal solvable 3-Lie algebra
  • 相关文献

参考文献12

  • 1FILIPPOV T. n-Lie algebras[J]. Sib Mat Zh, 1985, 26(6) : 126 -140.
  • 2KASYMOV M. On a theory of n-Lie algebras[J]. Algebras I Logika, 1987, 26(3) : 277 -297.
  • 3NAMBU Y. Generalized hamiltonian dynamics[J]. Phys Rev D, 1973(7) 2405 -2412.
  • 4TAKHTAJAN I,. On foundation of the generalized nambu mechanics[ J]. Comm Math Phys, 1994, 160 : 295 - 315.
  • 5BAGGER J, LAMBERT N. Gauge symmetry and supersymmetry of multiple M2-branes[ J]. Phys Rev D, 2008, 7: 65.
  • 6BAGGER J, LAMBERT N. Modeling multiple M2-branes[ J]. Phys Rev D, 2007, 75: 045020.
  • 7BAI R, MENG D. The strong semisimple n-Lie algebra[ J]. Comm Atg,2003, 31 (11 ) : 5331 -5341.
  • 8BAI R, AN H, LI Z. Centroid structures of n-Lie algebras[J]. Linear Alg Appl,2009, 430:229 -240.
  • 9BAI R, JIA P. The real compact n-Lie algebras and invariant bilinear forms [ J ]. Acta Mathematica Scientia,2007A, 27 (6) : 1074 - 1081.
  • 10杨晓坡,张卓,唐孝敏.一类无限维李代数的泛中心扩张(英文)[J].黑龙江大学自然科学学报,2010,27(3):332-337. 被引量:2

二级参考文献2

共引文献9

同被引文献20

  • 1FILIPPOV T. n - Lie algebras[J]. Sib Mat Zh, 1985, 26(6) : 126 - 140.
  • 2KASYMOV M. On a theory ofn-Lie algebras[J]. Algebras I Logika, 1987, 26(3) : 277 -297.
  • 3NAMBU Y. Generalized Hamiltonian dynamics [ J ]. Phys Rev D, 1973, 7 : 2405 - 2412.
  • 4TAKHTAJAN L. On foundation of the generalized Nambu mechanics[J]. Comm Math Phys,1994, 160:295 -315.
  • 5BAGGER J, LAMBERT N. Gauge symmetry and supersymmetry of multiple M2 -branes[ J ]. Phys Rev D, 2008, DOI:10.1103/PhysRevD. 77. 065008.
  • 6BAGGER J, LAMBERT N. Modeling multiple M2s [ J ]. Phys Rev D, "2007, 75 (4) : 045020.
  • 7BAIR,SHENC,ZHANGY.3-Lie algebras with an idealN[J].Linear Alg Appl,2009,431:673-700.
  • 8NAMBU Y. Generalized Hamiltonian dynamics [ J ]. Phys Rev D, 1973,7 (8) :2405 - 2412.
  • 9TAKHTAJAN L. On foundation of the generalized Nambu mechanics[ J]. Comm Math Phys, 1994, 160(2) :295 -315.
  • 10BAGGER J, LAMBERT N. Gauge symmetry and supersymmetry of multiple M2-branes [ J ]. Phys Rev D, 2008,77 (6) :065008.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部