期刊文献+

Banach空间中的Zbǎganu常数

The Zbǎganu constant of Banach space
下载PDF
导出
摘要 研究Banach空间中的Zbǎganu常数在不动点中的一些应用。首先,分别讨论Zbǎganu常数与弱正交系数ω(X),系数R(X)的关系,得到了Banach空间满足DL条件的充分条件,从而得到Banach空间上的单值非扩张映射存在不动点。其次,讨论Zbǎganu常数与弱正交系数ω(X),系数R(X)和WCS(X)的一些关系。最后,利用凸系数ε0(X)与Zbǎganu常数的关系给出Banach空间X及对偶空间具有正规结构的充分条件。 Some applications in fixed point with the Zb^iganu constant of Banach space are studied. First, Some suf- ficient conditions for a Banach space has DL conditions by the generalization of Zbaganu constant with the coefficient of weak orthogonality ω (X) , coefficient R (X) , which imply the existence of fixed point for the single valued nonexpansive mappings. Second, the generalization of Zbaganu constant, the coefficient of weak orthogonality to (X) , coefficient R(X) and WCS(X) are investigated. Finally, some sufficient conditions with convex coefficient ε0 (X) and Zbaganu constant which imply a Banach space X and the dual space has normal structure are presented.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2011年第1期55-60,共6页 Journal of Natural Science of Heilongjiang University
基金 黑龙江省自然科学基金资助项目(A200902)
关键词 正规结构 弱正交系数ω(X) 系数R(X) 凸系数ε0(X) Zbaganu常数 不动点性质 normal structure coefficient of weak orthogonality ω(X) coefficient R (X) convex coefficientε0 (X) Zbaganu constant fixed point property
  • 相关文献

参考文献14

  • 1GOEBEL K, KIRK W A. Topics in metric fixed point theory[ M]. Cambridge: Cambridge Univ Press, 1990.
  • 2KIRK W A. A fixed point theorem for mappings which do not increase distance [ J]. Amer Math Monthly, 1965, 72:1 004 -1 006.
  • 3ZBAGANU G. An inequality of M Radulescu and S Radulescu which characterizes the inner product spaces [ J ]. Rev Roumaine Math Pures Appl, 2002, 47(2) : 253 -257.
  • 4GAO J, SAEJUNG S. Normal structure and the generalized James and Zbaganu conatants[ J]. Nonlinear Analysis, 2009,71:3 047 -3 052.
  • 5LLORENS-FUSTER E. Zbaganu constant and normal structure[ J ]. Fixed Point Theory, 2008, 9 : 159 - 172.
  • 6LLORENS-FUSTER E, MAZCU NAN-NAVARRO E M, REICH S. The ptolemy and Zbaganu constants of nonned spaces[ J]. Nonlinear Analy- sis, 2010,72:3984 -3993.
  • 7SIMS B. Orthogonality and fixed points of nonexpansive maps[ C]. Proc Centre Math Anal. Canberra: Austral Nat Univ, 1988:178 -186.
  • 8JIMENEZ M, LLORENS-FUSTER E, SAEJUNG S. The von Neumann-Jordan constant, weak orthogonality and normal structure in Banach spaces [J]. Proc Amer Math Monthly, 2006, 134(2) : 355 -364.
  • 9GARCIA F, HOUSTON J. The stability and fixed points for nonexpansive mappings[ J]. J Math Anal Appl,1994, 20:495 -505.
  • 10BYNUM W. Normal structure coefficients for Banach spaces[ J ]. Pacific J Math, 1980, 86 (2) : 427 - 436.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部