期刊文献+

基于融合和T-分布的SAR图像水灾变化检测 被引量:4

Detection for Flood Change with SAR Images Based on Fusion and T-Distribution
下载PDF
导出
摘要 基于融合和T-分布模型,提出了一种新的SAR图像水灾变化检测方法.首先,结合差值法与对数比的优点,根据经验提出了一种新的融合策略,通过融合差值图像和对数比图像可得视觉效果较好的差异图像.然后根据融合后的差异图像的直方图,确定绝对变化类与绝对非变化类两个区间,从而可得两者之间的模糊区间.假设模糊区间的直方图服从T-分布,根据Kittler-Illingworth(KI)阈值选取准则,提出了一种基于T-分布模型改进的KI阈值法(TM_KI),对融合后的差异图像进行阈值分割得到水灾变化结果.通过实验比较,结果分析表明该方法不但能减少相干斑噪声的影响和增强水灾带来的微弱变化信息,而且能有效地检测面积较小的变化区域,从而改善变化检测性能. Based on fusion and T-distribution model,a new approach for detecting flood changes with multi-temporal SAR images is presented.Firstly,by incorporating the advantages of image differencing and log-ratio operator,a novel fusion strategy based on experience is introduced.Then,the final difference image with better effect in vision can be obtained by fusing with difference image and log-ratio image.According to the histogram of the final difference image obtained by fusion strategy,the two ranges of absolute changed and absolute unchanged classes in the histogram can be got,respectively.Then the fuzzy range between the two ranges is obtained,which are unable to identify changed or unchanged classes.Under the T-distribution assumption of the fuzzy range in the histogram,a thresholding approach based on the Kittler-Illingworth(KI) threshold selection criterion(TM_KI) is proposed.Finally,the change-detection map is produced by using the proposed thresholding procedure to the fusing difference image.Through experimental comparisons,analysis of results confirm the proposed method not only can reduce the affection by speckle noise and enhance the subtle changed areas brought by flooding,but also effectively detect small changed areas,so that this method can improve the performance of change detection.
出处 《计算机研究与发展》 EI CSCD 北大核心 2011年第2期271-280,共10页 Journal of Computer Research and Development
基金 国家"八六三"高技术研究发展计划基金项目(2007AA12Z136 2007AA12Z223 2009AA12Z210) 国家自然科学基金项目(60672126 60673097 60702062 60803097) 教育部长江学者和创新团队支持计划基金项目(PCSIRT IRT0645) 国家教育部科技研究重点项目(108115)
关键词 变化检测 差值法 对数比 SAR图像 T-分布 change detection differencing log-ratio operator SAR image T-distribution
  • 相关文献

参考文献14

  • 1Singh A. Digital change detection techniques using remotely sensed data [J]. International Journal of Remote Sensing, 1989, 10(6): 989-1003.
  • 2Radke R J, Andra S, AI-Kofahi O, et al. Image change detection algorithms: A systematic survey [J]. IEEE Trans on Image Processing, 2005, 14(3): 294-307.
  • 3Fransson J E S, Waiter F, Blennow N, et al. Detection of storm-damaged forested areas using airborne CARABAS-II VHF SAR image data [J]. IEEE Trans on Geoscience and Remote Sensing, 2002, 40(10): 2170-2175.
  • 4Mas J F. Monitoring land-cover changes: A comparison of change detection techniques [J]. International Journal of Remote Sensing, 1999, 20(1):139-152.
  • 5Ridd M K, Liu J J. A comparison of four algorithms for change detection in an urban environment [J].Remote Sensing Environment, 1998, 63(2): 95-100.
  • 6Ghosh S, Bruzzone L, Patra S, et al. A context sensitive technique for unsupervised change detection based on Hopfield type neural networks [J]. IEEE Trans on Geoscience and Remote Sensing, 2007, 45(3): 778 -789.
  • 7Bazi Y, Bruzzone L, Melgani F. An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images [J]. IEEE Trans on Geoscienee and Remote Sensing, 2005, 43(4):874-887.
  • 8Lu D, Mausel P, Brondizio E, et al. Change detection techniques [J]. International Journal of Remote Sensing, 2004, 25(12):2365-2407.
  • 9李德仁.利用遥感影像进行变化检测[J].武汉大学学报(信息科学版),2003,28(S1):7-12. 被引量:228
  • 10Fung T. An assessment of TM imagery for land-cover change detection [J].IEEE Trans on Geoscience and Remote Sensing, 1990, 28(4): 681-684.

二级参考文献15

  • 1Tyagi A, Keck M, Davis J W, et al. Kernel-based 3D tracking [C]//Proc of IEEE CVPR'07. Piscataway, NJ: IEEE, 2007:1-8.
  • 2Song N, Gu I Y H, Cao Z, et al. Enhanced spatial-range mean shift color image segmentation by using convergenee frequency and position [C] //Proc of the 14th European Signal Processing Conference. 2006.
  • 3Fukunaga K, Hostetler L. The estimation of the gradient of a density function, with applications in pattern recognition[J]. IEEETranson Information Theory, 1975, IT-21(1): 32-40.
  • 4Cheng Y. Mean shift, mode seeking, and clustering [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799.
  • 5Comaniciu D, Meer P. Mean shift: A robust approach towards feature space analysis [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
  • 6Comaniciu D. An algorithm for data driven bandwidth selection [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(2): 281-288.
  • 7Arnaldo Mayer, Hayit Greenspan. Segmentation of brain MRI by adaptive mean shift [C] //Proc of IEEE ISBI'06. Piscataway, NJ: IEEE, 2006:319-322.
  • 8Jimenez, Juan R, Medina, Veronica, Yanez, Oscar. Nonparametric MRI segmentation using mean shift and edge confidence maps [C] //Proe of SPIE Conf on Medical Imaging. San Diego: SPIE, 2003:1433-1441.
  • 9Wang Jue, Bo Thiesson, Xu Yingqing, et al. Image and video segmentation by anisotropic kernel mean shift[G] // LNCS: Proc of the 8th European Conf on Computer Vision. Berlin: Springer, 2004:238-240.
  • 10Irene Gu, Vasile Gui. Colour image segmentation using adaptive mean shift filters [C] //Proc of Int Conf on Image Processing. Piseataway, NJ: IEEE, 2001:726-729.

共引文献238

同被引文献89

  • 1高贵,匡纲要,李德仁.高分辨率SAR图像分割及目标特征提取[J].宇航学报,2006,27(2):238-244. 被引量:18
  • 2佘红伟,张艳宁,刘学工.基于BP神经网络的高分辨率遥感图像分类处理[J].勘察设计,2001,(3):37-40.
  • 3Celik T. Change Detetction in Satellite Images Using a Genetic Al- gorithm Approach [J].Geoscience and Remote Sensing Letters, 2010, 7 (2): 386-389.
  • 4Vongsy K, Mendenhall M J. Improved change detection through post change classification: A case study using synthetic hyperspec- tral imagery [C], IEEE Conference Publications, 2010:1 - 4.
  • 5PAUL L, RAMAMOORTHY D P. Synthetic aper- ture radar image change detection using fuzzy C- means clustering algorithm[J]. International Jour- nal of Advanced Research in Computer and Com- munication Engineering, 2013, 2(3): 1374-1379.
  • 6MEGHANA P M K, RAVIKUMAR A V. Robust technique for change detection in multitemporal syn- thetic aperture radar images [J]. International Journal of Scientific & Engineering Research, 2013, 4(7): 2228-2235.
  • 7MAS J F. Monitoring land-cover changes: a com- parison of change detection techniques [J]. Inter- national Journal of Remote Sensing, 1999, 20(1) : 139-152.
  • 8FRANSSON J E S, WALTER F, BLENNOW K, et al: Detection of storm-damaged forested areas u- sing airborne CARABAS-Ⅱ VHF SAR image data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(10): 2170-2175.
  • 9RIDD M K,LIU J J. A comparison of four algo- rithms for change detection in an urban environment [J]. Remote Sensing Environment, 1998, 63 (2) : 95-100.
  • 10KITTLER J, ILLINGWORTH J. Minimum error thresholding[J]. Pattern Recognition, 1986, 19 (1) : 41-47.

引证文献4

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部