期刊文献+

尺度可调的混合核RBF网络 被引量:4

Mixture Kernel RBF Network with Tunable Scales
下载PDF
导出
摘要 针对传统核模型中采用单一核函数的局限性,利用两个核函数的线性组合得到混合核.在RBF网络的训练中,采取正交最小二乘的方法进行逐步回归建模.在学习每个神经元参数时,首先,用全局k均值聚类法得到数据样本的聚类中心,然后对每一个聚类中心,利用群搜索优化器搜索出最佳的尺度和混合核调节参数,误差最小的参数组合即为径向基函数参数.实验说明,新的RBF网络具有稀疏性好,泛化能力高等优点. To overcome the limitation of one single kernel in the traditional kernel function model,a new type of mixture kernel is constructed by combining two kernel functions linearly.Each individual regressor in RBF network is trained term by term using orthogonal least squares algorithm.In the training phase,a global k-means cluster algorithm is used to decide the kernel centers.For each clustering centers,Group search optimizer(GSO) is utilized to get the proper scale and weight within the kernel.The optimal kernel parameters which minimize the training error are used to shape each regressor.The experiments results show that the new RBF network is sparser than some traditional RBF network with one single kernel.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第1期184-189,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.11026145 No.61071188) 湖北省自然科学基金(No.2009CDB0)
关键词 混合核 RBF网络 群搜索优化器 正交最小二乘 mixture kernel radial basis function(RBF) network group search optimizer orthogonal least squares
  • 相关文献

参考文献12

  • 1臧小刚,宫新保,常成,凌小峰,唐斌.一种基于免疫系统的RBF网络在线训练方法[J].电子学报,2008,36(7):1396-1400. 被引量:10
  • 2Chen S, Donoho D L, Saunders M. Atomic decomposition by basis pursuit[J]. SIAM J. Sci Comp, 1999,20(1) : 33 - 61.
  • 3Chen S, Wang X X, Brown D J. Orthogonal least squares regression with tunable kemels [ J ]. Electron Lett 2005,41 ( 8 ) : 484 - 486.
  • 4Karayiannis N B. Reformulated radial basis neural networks trained by gradient descent [ J ]. IEEE Trans on Neural Networks, 1999,10(3) :657 - 671.
  • 5Lazaro M, Santamaria I, Pataleon C. A new EM-based training algorithm for RBF networks [ J ]. Neural Networks, 2003, 16 (1) :69 - 77.
  • 6Gonzalez J, Rojas I, Ortega J, et al. Multi-objective evolutionary optimation of the size, shape and position parameters of radial basis function networks for function approximation [J].IEEE Trans on Neural Networks,2003,14(6) : 1478 - 1495.
  • 7Billings S A, Wei H, Balikhin M. Generalized multi- scale radial basis function networks [ J ]. Neural Networks, 2007,20 (10) : 1081 - 1094.
  • 8Tan Y, Wang J. A support vector machine with a hybrid kernel and minimal Vapnik Chervonenkis Dimension[J ]. IEEE Trans on Knowledge and Data Engineering, 2004,16 (4) : 385 - 395.
  • 9He S, Wu Q H, Saunders J R. Group search optimizer: an optimization algorithm inspired by animal searching behavior[ J]. IEEE Trans on Evolutionary Computation, 2009, 13 (5) : 973 - 990.
  • 10Krzanowski W J, Lai Y T. A criterion for determining the number of groups in a data set using sum of-squares clustering [ J]. Biometrics, 1988,44( 1 ) : 23 - 34.

二级参考文献7

  • 1Moody J,Darken C.Fast learning in networks of locally-tuned processing units[ J] .Neural Computation, 1989, ( 1 ) :281 - 294.
  • 2Inhyok Cha, Saleem A. Kassam. Channel equalization using adaptive complex radial basis function networks [ J ]. IEEE Journal on Selected Areas in Communications. 1995, 13 ( 1 ) : 122- 131.
  • 3Guang-Bin Huang, P. Saratchandran, Narasimhan Sundararajan.A Generalized Growing and Priming RBF(GGAP-RBF) Neural Network for Function Approximation[ J]. IEEE Transactions on Neural Network,2005,16(1) :57 - 67.
  • 4C A Janeway Jr,P Travers. Immunobiology the immune system in health and disease[ M]. New York: Garland Publishing Inc, 1994.
  • 5Smith D J, Forrest S, Perelson A S. Immunological memory is associative[ A]. Immunity Based Systems, International Conference on Multiagent Systems [ C ]. Kyoto: Workshop Notes, Workshop 4,1996.62 - 70.
  • 6Simoes,E Costa. An immune system-based genetic algorithm to deal with dynamic environments: diversity and memory [ A]. Proceedings of the 6th International Conference on Neural Networks and Genetic Algorithms [C]. Springer,2003. 168- 174.
  • 7Qilian Liang, Jerry M. Mendel. Equalization of nonlinear timevarying channels using type-2 fuzzy adaptive filters[J]. IEEE Transactions on Fuzzy Systems. 2000,8 (5) : 551 - 563.

共引文献9

同被引文献46

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部