期刊文献+

基于位置分辨率的折反射全向图像邻域定义 被引量:2

Neighborhood Definition for Catadioptric Omnidirectional Image Based on Resolution of Position
下载PDF
导出
摘要 由于折反射投影,两个具有相同欧氏距离的世界点,当它们成像在折反射全向图像边缘或图像中心时,它们之间的像素距离却并不相同.因此,传统的邻域选取方法并不适合折反射全向图像处理.本文根据全向图像不同位置分辨率的比例关系,提出了一套新的邻域定义方法并推导了一种新的折反射全向图像分辨率计算公式.通过在马尔可夫随机场全向图像运动目标检测应用中与传统邻域进行对比实验,显示改进后的邻域比传统邻域在整个图像中有更一致的检测效果. Because of catadioptric imaging,two points in the world with same distance will have different distance in omnidirectional image when they are projected to the periphery or center on the image plane.Thus,traditional definition of the neighborhood cannot be appropriate for omnidirectional images.In this paper,make use of ratio of resolution between different position in image,we propose a new system of neighborhood adapted to the omnidirectional images and deduce a new formula for calculating resolution of a catadioptric sensor.We show that this definition of neighborhood for catadioptric omnidirectional image conduce a more coincident result than traditional one in application of moving target detection base on Markov random fields.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第1期201-206,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60705013 60872150)
关键词 折反射全向图像 马尔可夫随机场 运动目标检测 分辨率 邻域 catadioptric omnidirectional image Markov random field moving target detection resolution neighborhood
  • 相关文献

参考文献16

  • 1Briggs A J,Detweiler C,Li Y,et al.Matching scale-space features in 1D panoramas [J]. Comput. Vis. Image Underst., 2006,103(3) : 184 - 195.
  • 2Coleman S , Scotney B, Kerr D. Processing sparse panoramic images via space variant operators[J]. J. Math Imaging Vis., 2008,32(3) :349 - 361.
  • 3Scotney, BW, Coleman, SA, Kerr, D. A graph theoretic approach to direct processing of sparse unwarped panoramic images[A]. Proceedings of IEEE Int Conf Image Processing[C]. Atlanta: IEEE, 2006. 1557 - 1560.
  • 4Bigot S, Kachi D, Durand S, et. al, Spherical image denoising and its application to omnidirectional imaging[ A]. Proceedings of 2nd Int Conf on Computer Vision Theory and Applications [ C]. Barcelona: IEEE, 2007.8 - 11.
  • 5Bogdanova I, Bresson X, Thiran J, et. al. Scale-space analysis and active contours for omnidirectional images[ J]. IEEE Trans Image Process. 2077,16(7) : 1888 - 1901.
  • 6Daniilidis, K, Makadia, A, Blow, T Image processing in catadioptric planes: spatiotemporal derivatives and optical flow computation[ A ]. Proceedings of IEEE Workshop on Omnidirectional Vision[ C]. Denmark: IEEE, 2002.3- 10.
  • 7Ieng S, Benosman R, Devars J. An efficient dynamic multi-angular feature points matcher for catadioptric views [ A ]. Proceedings of Workshop on Omnidirectional Vision and Camera Networks[ C]. Madison: IEEE, 2003.
  • 8Svoboda, T, Pajdla, T. Matching in catadioptric images with appropriate windows and outliers removal[ A]. Proceedings of Internat Conf On Computer Analysis of Images and Pattems[ C]. Poland: IEEE,2001.733 - 740.
  • 9Demonceaux C, Vasseur P. Markov random fields for catadioptric image processing[ J]. Pattern Recognition Letters, 2006, 27 (16) : 1957 - 1967.
  • 10Strauss O, Comby F. Variable structuring element based fuzzy morphological operations for single viewpoint omnidirectional images[J].Pattern Recognition, 2007,40(20) : 3578 - 3596.

二级参考文献10

  • 1章毓晋.图像分割[M].北京:科学出版社,2001..
  • 2Lee J S, Hoppel K W, Mango S A, et al. Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery[ J] .IEEE Trans on Geoscience and Remote Sensing, 1994,32 (5) :1017 - 1028.
  • 3Geman S, Geman D. Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1984,6:721 - 741.
  • 4Kottke D P,Fiore P D,Brown K L,et al.A design for HMMbased SAR ATR[ A]. SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery V[C]. Orlando, Florida, USA: SPIE Press, 1998.541 - 551.
  • 5Lee J S,Grunes M R,Ainsworth T L,et al. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier [ J ]. IEEE Trans on Geoscience and Remote Sensing, 1999,37(5) :2249 - 2258.
  • 6Hoekman D H,Vissers M A M. A new polafimellic classification approach evaluated for agricultural crops [ J ]. IEEE Trans on Geoscience and Retrain Sensing,Z303,41(12) :2881-2889.
  • 7Rignot E, Chellappa R. Segmentation of polarimetric synthetic aperture radar data[J]. IEEE Trans on Image Processing, 1992, 1 (3) :281 - 300.
  • 8Tran T N, Wehrens R, Hoekman D H, et al. Initialization of Markov random field clustering of large remote sensing images [J]. IEEE Trans on Geoscience and Remote Sensing,2005,43(8):1912 - 1919.
  • 9Touzi R, Charbonneau F. Characterization of target symmetric scattering using polarimetric SARs [ J ]. IEEE Trans on Geoscience and Remote Sensing,2002,40 (11):2507- 2516.
  • 10De Grandi G F, Hoekman D. A wavelet mulfiresolution technique for polarimetric texture analysis and segmentation of SAR images[ A ]. Proc. IEEE International Geoscience and Remote Sensing Symposium [ C ]. Anchorage, Alaska, USA: IEEE Press, 2004.710- 713.

共引文献12

同被引文献32

  • 1曾吉勇,苏显渝.水平场景无畸变折反射全景成像系统透镜畸变的消除[J].光学学报,2004,24(6):730-734. 被引量:5
  • 2Boult T E, Gao X, Micheals R, et al. Omni-directional visual surveiUanceE J]. Image and Vision Computing, 2004, 22 ( 7 ) : 515 - 534.
  • 3Ikeuchi K, Sakauchi M, Kawasaki H, et al. Constructing virtual cities by using panoramic images [ J ]. International Journal of Computer Vision, 2004,58(3 ) :237 - 247.
  • 4Donoho D L. Compressed sensing [ J ]. 1EEE Transactions on Information Theory ,2006,52(4) : 1289 - 1306.
  • 5Cand's E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplele frequency information [ J ]. IEEF, Transactions on Information Theory, 2006,52(2) :489 - 509.
  • 6Baraniuk R, Steeghs P. Compressive radar imaging[ A]. Pro- ceedings of IEEE 2007 Radar Conference [ C ]. Waltham, Mas- sachusetts,2007. 128 - 133.
  • 7Lustig M, Donoho D L, Santos J M, et al. Compressed sensing MRI[ J ]. IEEE Signal Processing Magazine, 2008,25 (2) : 72 - 82.
  • 8Ma J. Single-pixel remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2009,6 ( 2 ) : 199 - 203.
  • 9Romberg J. Imaging via compressive sampling[ J]. IEEE Sig- nal Processing Magazine,2008,25(2) : 14 - 20.
  • 10Tropp J A. Greed is good: Algorithmic resttlts for sparse ap- proximation[ J ]. IEEE Transactions on Information Theory, 2004,50(10) :2231 - 2242.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部