期刊文献+

隐式曲面两相图像分割的变分水平集模型及对偶方法 被引量:6

Variational Image Segmentation on Implicit Surface Using Dual Method
下载PDF
导出
摘要 本文对曲面上分段常值和分段光滑的两相图像分割的变分水平集模型及其对偶方法进行了研究.图像所在的曲面用静态的符号距离函数的零水平集表达,曲面上图像分割轮廓线用另一动态符号距离函数的零水平集与上述静态的零水平集的交线表达,借助内蕴梯度、内蕴散度的概念平面两相图像分割的变分水平集模型已被推广到隐式曲面上图像分割的变分模型.本文借助二值标记函数和凸松弛的概念,将该模型转化为全局凸优化的极值问题,避免了轮廓线初始化对分割结果的影响.针对隐式曲面上两相图像分割的凸优化模型,设计了相应的对偶方法.最后通过数值实验验证了本文所提方法的计算效率优于传统方法. The variational level set model for piecewise constant/smooth image segmentation on surfaces and the related dual methods are investigated in this paper.The implicit surface on which the image is defined is represented by zero level set of a static signed distance function,the spatial contour used to divide regions of image on the implicit surface is expressed by the intersection of another dynamic zero level set and implicit surface.The variational level set model for planar image segmentation has been extended to the one on implicit surface by means of intrinsic gradient and intrinsic divergence,which is transformed to a global convex minimization problem in this paper using a new binary label function and the concept of convex relaxation to void the effect of initialization of active contour on the result of segmentation.Finally,the dual methods for solving the global convex minimization problem is designed in this paper and some numerical experiments demonstrate the proposed method is superior to traditional method in computation efficiency.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第1期207-212,共6页 Acta Electronica Sinica
基金 山东省自然科学基金(No.Y2008G17)
关键词 隐式曲面 图像分割 变分方法 水平集方法 对偶方法 implicit surface image segmentation variational method level set method dual method
  • 相关文献

参考文献21

  • 1G Aubert,P Kompmbst. Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations [ M ]. New York: Springer, 2001.
  • 2S Osher, N Paragios. Geometric Level Set Methods in Imaging, Vision, and Graphics [M]. New York: Springer-Verlag, 2003.
  • 3N Paragios, Y Chen, O Faugeras. Handbook of Mathematical Models in Computer Vision[M]. New York: Springer, 2006.
  • 4F T Chart, J Shen. Image Processing and Analysis:Variational, PDE. Vavelet, and Stochastic Methods [ M ]. Philadelphia: SIAM, 2005.
  • 5X C Tai, K A Lie, et al. Image Procesisng Based on PartialDifferential Equations[ M]. Heidelberg: Springer- Verlag, 2037.
  • 6M Bertalmio, L Cheng, et al. Variational problems and partial differential equations on impficit surfaces[J ]. Journal of Computational Physics, 2001,174(2) : 759 - 780.
  • 7F Memoli, S Sapiro, and S Osher. Solving variational problems and partial differential equations mapping into general target manffolds[ J]. Journal of Computational Physics, 2004,195( 1 ) : 263 - 292.
  • 8M Bertalmio,F Memoli, et al. Variational problems and partial differential equations on implicit surfaces:bye triangulated surfaces? [A]. Geometric Level Set Methods in Imaging, Vision and Graphics[ C]. New York: Springer-Verlag, 2003, 381 - 398.
  • 9L M Lui. Computational Conformal Ceometry and Its Applications to Human Brain Mapping [ D ]. Los Angeles: University of California at Los Angeles, 2008.
  • 10L D Lopez-Perez. Regularization of Images Defined on Nonflat Surfaces [ D ]. Nice: University of Nice-Sophia Antipolis, 2007.

二级参考文献66

共引文献171

同被引文献41

  • 1BERTALMIO M, CHENG L T,OSHER S, et al. Variation- al problems and PDE' S on implicit surfaces [ J ]. Journal of Computational Physics, 2001,174 (2) : 186 -193.
  • 2OSHER S, SETHIAN J A. Fronts propagating with curva- ture dependent speed:Algorithms based on Hamihon-Ja- cobi formulations [ J ]. Journal of Computational Physics, 1988,79 (1) :1249.
  • 3CHANT F, VESE L A. Active contours without Edge [ J ]. IEEE Transactions on Image Processing, 2001,10 ( 2 ) : 266 -277.
  • 4BRESSON X, ESEDOGLU S, VANDERGHEYNST P, et al. Fast global minimization of the active contour/snake model [ J ]. Math. Imaging Vis, 2007,28 ( 2 ) : 151 - 167.
  • 5OSHER S, FEDKIW R. Level set methods and dynamic implicit surfaces [ M ]. New York : Springer-Verlag,2002.
  • 6SAMSON C, BLANC-FERAUD L, AUBERT G. A level set model for image classification [ J ]. International Journal of Computer Vision ,2000,40 ( 3 ) : 187-197.
  • 7VESE L A, CHANT F. A muhiphase level set framework for image segmentation using the Mumford and Shah model [ J ]. International Journal of Computer Vision, 2002, 50 ( 3 ) : 271-293.
  • 8CHUNG G, VESE L A. Energy minimization based seg- mentation and denoising using a multilayer level set ap- proach[ J ]. Lecture Notes in Computer Science, 2005, 3757:439-455.
  • 9LIE J ,LYSAKER M,TAI X C. A binary level set model and some applications to Mumford-Shah image segmentation[ J ]. IEEE Transection on image processing, 2006, 15 ( 5 ) : 1171-1181.
  • 10LIE J, LYSAKER M, TAI X C. A variant of the level set method and applications to image segmentation [ J ]. Math. Comp. ,2006,75 : 1155-1174.

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部