摘要
Semi-bent函数是一种具有高非线性度的布尔函数,它们在密码和通信领域中都有重要的应用价值.本文构造了三类由迹函数表示的semi-bent函数.证明了当限制某些参数的取值范围时,这些新构造函数的semi-bent性与Kloosterman和密切相关.并且证明了每一类新构造的含有n个变元的semi-bent函数,都存在一个semi-bent函数的子类,它们的代数次数是n/2.利用Kloosterman和的零点,也给出了小域上semi-bent函数的例子.
Semi-bent functions are a kind of Boolean functions with high nonlinearity.They have important applications in cryptography and communications.This paper gives three classes of semi-bent functions represented by trace.It is shown that the semi-bentness of the new functions is closely related to Kloosterman sums when the values of some parameters are restricted.It is also proved there exists a subclass of semi-bent functions with degree n/2 in each class of the new semi-bent functions on n variables.Several examples of the semi-bent functions in a small field are given by using the zeros of some Kloosterman sums.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2011年第1期233-236,共4页
Acta Electronica Sinica
基金
国家自然科学基金(No.60773002)
国家863高技术研究发展计划(No.2007AA01Z472)
大唐移动通信资助基金