期刊文献+

2-模和R-2-模的关系(英文) 被引量:1

The Relation Between 2-Modules and R-2-Modules
下载PDF
导出
摘要 在范畴化理论的基础上,利用预见性范畴和可加2-函子的性质,证明了2-模和R-2模之间的关系,从而得到其相关理论的对应关系,并拓展进一步研究和应用2-模理论,对研究高维同调代数理论有重要作用. Based on the theory of categorization,we prove that there is a relation between the 2-modules and R-2-modules,using the properties of preadditive categories and additive 2-functors.Then we obtain the correspondence between the theories related to these 2-modules,which can expand the farther research and applications of the theory of 2-modules,which plays an important role in the study of higher dimensional homological algebra theory.
出处 《河南大学学报(自然科学版)》 CAS 北大核心 2011年第1期1-3,共3页 Journal of Henan University:Natural Science
基金 National Natural Science Foundation of China(10971071)
关键词 2-模 R-2-模 预见性的 可加2-函子 2-modules R-2-modules preadditive additive 2-functors
  • 相关文献

参考文献5

  • 1Freyd I P. Abelian categories[M]. New York: Harper&Row, 1964.
  • 2Dupont M. Abelian categories in dimension 2[D]. Louvain-la-Neuve: Universite Catholique de Louvain, 2008.
  • 3Huang F. Higher Dimensional Homological Algehra[D]. Guang zhou: South China university of Techonlogy, 2011.
  • 4Jibladze M, Pirashvili T. Third Mac Lane cohomology via categorical rings [J].J Homotopy Relat Struct, 2007(2) :187- 216.
  • 5Quang N T, Hanh D D, Thuy N T. On the Axiomatics of Ann-categories [J]. JP J Algebra Number Theory Appl, 2008, 11(1).59-72.

同被引文献7

  • 1Baez J C, Lauda A D. Higher-dimensional algebra V: 2-groups[J]. Theory Appl Categ, 2004, 12:423-491.
  • 2Dupont M. Abelian categories in dimension 2[D]. Louvain-la-Neuve: Universite Catholique de Lou-vain, 2008.
  • 3Jibladze M, Pirashvili T. Third Mac Lane eohomology via categorical rings[J]. J Homotopy Relat Struct, 2007 (2) :187- 216.
  • 4Schmitt V. Enrichments over symmetric picard categories[Z], arxiv:hep-th/0812.0150v2.
  • 5Quang N T. Introduction to Ann-categories[J]. Tap ch' To'an hoc, 1987, 15 :14- 24.
  • 6Quang N T, Hanh D D, Thuy N T. On the axiomatics of Ann-categories[J]. Journal of Algebra, Number Theory and Ap plications, 2008, 11(1):59-72.
  • 7Rotman J J.Advanced modern algebra[M]. Beijing: Higer Education Press, 2004.

引证文献1

  • 1黄芳,朱跃峰.2-环的表示[J].河南大学学报(自然科学版),2015,45(1):1-5.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部