期刊文献+

参与瘤胃内纤维素降解过程的主要微生物研究进展 被引量:10

The Research Advance of the Processes of Cellulose Degradation in Rumen and Related Microoganisms
下载PDF
导出
摘要 纤维素是反刍动物的必需营养素之一,反刍动物主要通过瘤胃微生物降解纤维素。研究者们希望通过全面深入地了解纤维素在瘤胃内的降解过程及相关微生物的信息去调控瘤胃发酵,最终提高动物生产性能。因此,纤维素在瘤胃内的降解过程及相关微生物是反刍动物营养研究的重要内容之一。目前,人们对瘤胃内个别种属纤维分解菌的个别菌株研究较为深入,并建立了纤维小体模型,但是缺乏对瘤胃微生物这个复杂系统整体的了解,同时人们对纤维降解菌和纤维素酶的研究还停留在理论阶段。作者综述了纤维素降解过程及主要相关微生物,其中重点介绍纤维分解菌及相应的纤维素酶的分类、结构和功能,以及固相黏附微生物的洗脱方法等。 Cellulose is one of the essential nutrients for ruminants and ruminants depend on rumen microbial degradate cellulose that they can not digest and use by themselves.The researchers hope that through a comprehensive and in-depth understanding of the processes of cellulose degradation in the rumen and information of related microoganisms to regulate rumen fermentation,finally improve animal performance.Therefore,the process of cellulose degradation in the rumen and related microoganisms is an important part of the study of ruminant nutrition.Now the study of individual strains of several species is more in-depth and the model of cellulosome has been established,but we lack the overall understanding of rumen microoganisms,and the study of fibrolytic ruminal microorganisms and enzymes still remain in the realm of theory.In this paper,we will discuss the process of cellulose degradation in the rumen and the major relevant microorganisms,focusing on fibrolytic ruminal microorganisms and the classification and structure of corresponding enzymes and the methods of solid-phase bacteria elution.
出处 《中国畜牧兽医》 CAS 北大核心 2011年第2期37-42,共6页 China Animal Husbandry & Veterinary Medicine
基金 中国农业科学院北京畜牧兽医研究所基本科研专项资金项目(2010jc-3-2)
关键词 纤维素 瘤胃微生物 纤维素酶 纤维小体 cellulose rumen microoganisms cellulose cellulosome
  • 相关文献

参考文献40

  • 1刘开朗,王加启,卜登攀.2008-2009年反刍动物营养研究进展 Ⅰ.瘤胃微生物多样性与功能[J].中国畜牧兽医,2010,37(2):5-14. 被引量:28
  • 2杨凤.动物营养学[M].北京:中国农业出版社,2000..
  • 3Alber O,Noach I,Rincon M T, et al. Cohesin diversity revealed by the crystal structure of the anchoring cohesion from Ruminococcus flavefaciens [J]. Proeteins, 2009,77 (3) : 699-- 709.
  • 4All E,Zhao G S, Sakka M. Functions of family 22 carbohydratebinding module in Clostridiumther mocellum Xyn10C[J]. Biosci Biotechnol Biochem,2005,69(1) :160--165.
  • 5Berg M M E, Antonopoulos D A,Rincon M T,et al. Diversity and strain specificity of plant cell wall degrading enzymes revealed by the draft genome of Ruminococcus flavefaciens FD-1[J]. PLoS One,2009,4(8) :e66501-e66506.
  • 6Blanch M,Calsamiglia S, Devant M, et al. Effects of acarbose on ruminal fermentation,blood metabolites and microbial profile involved in ruminal acidosis in lactating cows fed a high carbohydrate ration[J]. J Dairy Res,2010,77(1):123-128.
  • 7Blouzard J C,Coutinho P M, Fierobe H P, et al. Modulation of cellulosome composition in Clostridium cellulolyticum : adaptation to the polysaccharide environment revealed by proteomie and carbohydrate active enzyme analyses [J].Proteomics, 2009,10 ( 3 ) 541-554.
  • 8Bryant M P,Burkey L A. Numbers and some predominant groups of bacteria in the rumen of cows fed different rations[J]. Journal of Dariy Science, 1953(51) : 1950-1955.
  • 9Cai S, Li J, Zhang K, et al. Cellulosilyficum ruminicola, a newly described rumen bacterium that possesses redundant fibrolyticprotein encoding genes and degrades lignoeellulose with multiple carbohydrate borne fibrolytic enzymes[J]. Appl Environ Microbiol,2010,76(12) :3818-3824.
  • 10Chen B Y, Wang H T. Utility of enzymes from Fibrobacter succinogenes and Prevotella ruminicola as detergent additives[J]. J Ind Microbiol Bioteehnol,2008(35):923-930.

二级参考文献42

  • 1Reynal S M, Broderick G A. Technical note: a new high performance liquid chromatography purine assay for quantifying microbial flow. J Dairy Sci, 2009, 92:1177-1181.
  • 2Russell J B, Muck R E, Weimer P J. Quantitative analysis of cellulose degradation and growth of cellulolytie bacteria in the rumen. FEMS Microbiol Ecol, 2009, 67:183-197.
  • 3Sekhavati M H, Mesgaran M D, Nassiri M R, et al. Develop ment and use of quantitative competitive PCR assays for relative quantifying rumen anaerobic fungal populations in both in vitro and invivo systems. MycolRes, 2009, 113: 1146-1153.
  • 4Shedova E N, Lunina N A, Berezina O V, et al. Expression of the genes CelA and XylA isolated from a fragment of metagenomic DNA in Escherichia coli. Mol Gen Mikrobiol Virusol, 2009, 24: 76-81.
  • 5Shinkai T, Ohji R, Matsumoto N, et al. Fibrolytic capabilities of ruminal bacterium Fibrobacter succinogenes in relation to its phylogenetic grouping. FEMS Microbiol Lett, 2009, 294: 183-190.
  • 6Sundset M A, Edwards J E, Cheng Y F,et al. Rumen microbial diversity in Svalbard reindeer, with particular emphasis on methanogenic archaea. FEMS Microbiol Ecol, 2009,70:221-230.
  • 7Toyoda A, Iio W, Mitsumori M,et al. Isolation and identification of cellulose binding proteins from sheep rumen contents. Appl Environ Microbiol, 2009, 75:1667-1673.
  • 8Vasta V,Makkar H P, Mele M, et al. Ruminal biohydrogena tion as affected by tannins in vitro. Br J Nutr, 2009, 102:82- 92.
  • 9Wang F,Li F,Chen G,et al. Isolation and characterization of novel cellulase genes from uncultured microorganisms in different environmental niches. MierobiolRes, 2009, 164: 650-657.
  • 10Welkie D G, Stevenson D M, Weimer P J. ARISA analysis of ruminal bacterial community dynamics in lactating dairy cows during the feeding cycle. Anaerobe, 2009, doi: 10. 1016/j. an aerobe. 2009.07. 002.

共引文献86

同被引文献159

引证文献10

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部