期刊文献+

非平稳卷积混合信号的盲分离

Convolutive Blind Source Separation of Non-stationary Source
下载PDF
导出
摘要 传感器采集到的信号是由多目标源、环境噪声等经多途径卷积混合的形式。为有效地去除环境因素如干扰、传输延迟等的影响,提出一种新的盲信号分离方法。利用非平稳信号的多重去相关和最小二乘准则来估计混合矩阵A或解混矩阵W以及信号和噪声功率。实验结果表明,该算法具有良好的分离效果。 Signals obtained by sensor arrays are convolutive mixtures for multiple-sources and environment noises through multiple-paths. A novel approach of the blind source separation is proposed to remove the interferences of time-delay and environment noises. It takes up the multiple decorrelation approach assuming non-stationary signals and uses a least square optimization to estimate A or W as well as signal and noise powers. Experiment results illustrate the algorithm can get high separation performance for both non-stationary and convolved mixing signals.
作者 唐江波 郭威
出处 《电声技术》 2011年第2期57-60,共4页 Audio Engineering
基金 国家自然科学基金项目(60272038) 广西科学基金项目(0639028)
关键词 盲分离 卷积混合 代价函数 非平稳信号 blind source separation convolutive mixture cost function non-stationary signal
  • 相关文献

参考文献16

  • 1张新成,杜志勇,周俊青.盲源分离技术及其应用[J].电声技术,2004,28(4):4-6. 被引量:10
  • 2韩政,梁端丹.带噪的战场声信号盲分离方法研究[J].电声技术,2008,32(6):53-56. 被引量:1
  • 3GERVEN V S,COMPERNOLLE V D.Signal separation in a symmetric adaptive noise canceler by output decorrelation[C]//Proc.ICASSP'92.[S.1.]:IEEE Press,1992 (4):221-224.
  • 4COMON P.Independent component analysis,a new concept[J].Signal Processing,1994:36 (3):287-314.
  • 5CARDOSO J F.Eigenstructure of the 4th-order cumulant tensor with application to the blind source separation problem[C]// Proc.ICASSP'89.Glasgow,UK:IEEE Press,1989:2109-2112.
  • 6JUTTEN C,HERAULT J.Blind separation of sources,Part Ⅰ:An adaptive algorithm based on neuromimatic architecture[J].Signal Processing,1991,24(1):1-10.
  • 7YELLIN D,WEINSTEIN E.Multichannle signal separation:Methods and analysis[J].IEEE Trans.Signal Processing,1996,44(1):106-118.
  • 8THI H L N,JUTTEN C.Blind source separation for conbolutive mixtures[J].Signal Process,1995,45(2):209-229.
  • 9SHANSUMDER S,GIANNALIS G.Multichannel blind signal separation and reconstruction[J].IEEE Trans.Speech Audio Processing,1997(5):515-528.
  • 10LAMBERT R,BELL A.Blind separation of multiple speakers in a multipath environment[C]//Proc.ICASSP' 97.Munich,Germany:IEEE Press,1997:423-426.

二级参考文献11

  • 1Comon P. Independent Component Analysis, A New Concept. Signal Processing, 1994,36:287-314.
  • 2Bell AJ, Sejnowske TJ. An Information Maximization Approach to Blind Separation and Blind Deconvolution.Neural Computation, 1995, (7): 1129-1159.
  • 3Amari S, et al. A New Learning Algorithm for Blind Signal Separation. Advances in Neural Information Processing Systems 8, 1996,MIT press. 757-763.
  • 4Lee T W, et al. Independent Component Analysis for Sub-Gaussian and Super-Gaussian Mixtures. proc.4th Joint Symp. Neural Computation 7,1995. 132-139.
  • 5Jung TP,et al. Extended ICA Removes Artifacts from Electroencephalographic Recordings. Advances in Neural Information Processing Systems 10,1997.
  • 6CHOI S, CICHOCKI A, PARK H M, et al. Blind source separation and indepent component analysis: a review[J]. Neural Information Processing-letters and Reviews,2005, 1 (6) : 1-57.
  • 7HYVARINEN A. A fast fixed-point algorithm for independent component analysis[J]. Neural Computation, 1997, 7(9) : 1482-1483.
  • 8HYVARINEN A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Trans. on Neural Newwork, 1999,10 (3) : 626-634.
  • 9HYVARINEN A, OJA E. Independent component analysis[M]. [S.l.]:John Wiley and Sons,2001.
  • 10HYVARINEN A. Gaussian moments for noisy independent component analysis[J]. IEEE Signal Processing Letters, 1999,6(6) : 145-147.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部