摘要
提出了一种新的基于刚性图理论和遗传算法的节点定位算法,以无线传感器网络节点的有效定位为基础,利用刚性图理论形成局部定位协作体,采用遗传算法实现节点位置的估算。该算法的特点是在形成定位协作体阶段利用节点多跳信息实现高定位率,利用节点间的测距信息实现高定位精度和高定位率。仿真实验表明,所提出算法的定位率比仅利用单跳信息时的定位率提高一倍,当测距误差Re=0.05R时,平均绝对定位误差为0.073R;当测距误差Re=0.1R时,平均绝对定位误差为0.14R。
Node localization is foundation of the majority application of wireless sensor networks(wsn).A new node localization algorithm based on rigid graph theory and genetic algorithm was proposed.The algorithm forms local localizable collaborative set(LCS) according to rigid graph theory at first and then the distance between nodes and anchors is used to realize node localization.The characteristic of the proposed algorithm is that multi-hop information is used during LCS formation phase to enhance localization ratio,the measured distance information is used to improve localization precision.Simulation results show that localization ratio of the proposed algorithm is twice of that of single-hop.Statistics also show that when measured ranging-error Re=0.1R,the average positioning absolute error is 0.14 R;and when Re=0.05R,the average positioning absolute error is 0.073R.
出处
《武汉理工大学学报(信息与管理工程版)》
CAS
2011年第1期13-17,共5页
Journal of Wuhan University of Technology:Information & Management Engineering
基金
国家自然科学基金资助项目(60703099)
关键词
定位协作体
刚性图理论
遗传算法
无线传感器网络
localizable collaborative set
rigid graph theory
genetic algorithm
wireless sensor networks