期刊文献+

基于改进的K-means聚类算法的分类评价方法 被引量:6

Classification and Evaluation on Reviewers Based on Improved K-means Clustering Algorithm
下载PDF
导出
摘要 针对学术期刊运行与管理中对审稿专家缺乏准确评价依据的问题,结合评价分析的需求和K-means聚类算法特点,提出了一种基于改进的K-means聚类算法的审稿专家分类评价方法,该方法通过研究初始聚类中心的选择和评价标准的量化、聚类维度的选择和分类值大小的合理选择等问题,较为准确地解决了审稿专家的分类问题。经实例分析验证,该方法得到的结果是合理的,并具有很强的可操作性,为建立科学的审稿专家库和准确高质量地送审提供了科学的依据。 Aiming at the lack of a comprehensive evaluation system for reviewers in the academic journals,combining with evaluation needs and characteristics of K-means clustering algorithm,a method of classifying reviewers was proposed base on an improved K-means clustering algorithm.The method accurately solved the problem of classifying reviewers by selecting initial cluster centers,quantizing evaluation criteria,choosing cluster dimension and reasonably choosing the classification value in K-means clustering algorithm.The case study verified that the results obtained were reasonable,and the method was strongly operable.It provided a scientific basis to establish a scientific high-quality database of reviewers for the editorial board.
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2011年第1期32-35,共4页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 武汉理工大学2010年研究生自主创新基金资助项目
关键词 改进的K-means算法 聚类分析 审稿专家分类 improved K-means algorithm clustering analysis classification of reviewer
  • 相关文献

参考文献6

二级参考文献38

共引文献60

同被引文献42

  • 1党耀国,刘思峰,刘斌,陶勇.基于动态多指标灰色关联决策模型的研究[J].中国工程科学,2005,7(2):69-72. 被引量:64
  • 2石晶,胡明,戴国忠.基于小世界模型的中文文本主题分析[J].中文信息学报,2007,21(3):69-75. 被引量:9
  • 3汪海洋,潘德炉,夏德深.二维Otsu自适应阈值选取算法的快速实现[J].自动化学报,2007,33(9):968-971. 被引量:135
  • 4OSTU N A. Threshold selection method from gray level histogr am [J].IEEE Trans on Sy stems, Man and Cybernetics,1979, 9(1): 62-66.
  • 5CNCERT/CC Internet security threat report[EB/OL], http://www.cert.org. cn/publish/main/upload/File/20121227monthly 11 .pdf, 2012.
  • 6FEDYNYSHYN G, CHUAH M, TAN G. Detection and classification of different Botnet C&C channels[A]. Proceedings of the 8th Interna- tional Conference[C]. Banff, Canada, 2011.228-242.
  • 7BINKLEY J R, SINGH S. An algorithm for anomaly-based Botnet detection[A]. Proceedings of the 2nd Workshop on Steps to Reducing Unwanted Traffic on the Interact[C]. Berkeley, CA, USA, 2006.43-48.
  • 8TSAI M H, CHANG K C, LIN C C, et al. C&C tracer: Botnet com- mand and control behavior tracing[A]. Proceedings of the 2011 IEEE International Conference on Systems, Man and Cybernetics (SMC)[C]. Anchorage, AK, 2011.1859-1864.
  • 9GIROIRE F, CHANDRASHEKAR J, TAFT N, et al. Exploiting tem- poral persistence to detect covert botnet channels[A]. Proceedings of the Recent Advances in Intrusion Detection[C] Springer Berlin Hei- delberg, Brittany, France, 2009. 326-345.
  • 10LU C, BROOKS R. Botnet traffic detection using hidden Markova models[A]. Proceedings of the Seventh Annual Workshop on Cyber Security and Information Intelligence Research[C]. Oak Ridge, TN, USA, 2011.31.

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部