期刊文献+

彩色图像分割中基于图上半监督学习算法研究 被引量:3

Color Image Segmentation Using Graph-Based Semi-Supervised Learning
下载PDF
导出
摘要 提出一种新的基于图上半监督学习的彩色图像前景/背景分割模型与算法.该算法的目的是利用人工标定的部分像素点分割信息以实现对整幅图像的分割.通过结合像素点颜色特征和像素点颜色与前景/背景颜色的相似性特征,构造了新的图节点之间的双高斯权重函数,并对此提出自适应的参数选择策略与彩色图像半监督分割的能量模型,通过优化该能量模型将已知像素点的标号信息扩散到未知像素点.实验结果表明,所提出的新算法较已有算法具有更高的分割精度,因此具有重要的应用价值. A novel color image foreground/background segmentation model by semi-supervised learning is proposed. The essence is how to use the labeled pixels to achieve the whole image seg- mentation. Combining the color similarity between neighboring pixels and the color similarity between the unknown pixel and the known foreground/backgr0und pixels, a double-Gaussian func- tion for the weight of graph nodes is constructed. And an adaptive parameter selection strategy and an energy model of semi-supervised segmentation are presented. The energy model is used to predict the labels of the unlabeled points by an optimization process. The experiments demon- strate the better segmentation accuracy than the competing algorithms.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2011年第2期11-14,20,共5页 Journal of Xi'an Jiaotong University
基金 国家"973计划"资助项目(2007CB311002)
关键词 交互式图像分割 图上半监督 颜色相似性特征 双高斯模型 interactive image segmentation graph-based semi-supervised learning color similarity double-Gaussian model
  • 相关文献

参考文献13

  • 1CHEN H D, JIANG X H, SUN Y, et al. Color image segmentation: advances and prospects [J]. Pattern Recognition, 2001, 34(12):2259-2281.
  • 2MORTENSEN E N, BARRETT W A. Intelligent scissors for image composition [C] // Proceedings of ACM SIGGRAPH'95. Los Angeles, CA, USA: Los Angeles Convention Center, 1995 : 191-198.
  • 3GLEICHER M. Image snapping[C]//Proceedings of ACM SIC, GRAPH'95. Los Angeles, CA, USA: Los Angeles Convention Center, 1995: 183-190.
  • 4PERAZ P, BLAKE A, GANGNET M. Jetstream: probabilistic contour extraction with particles[C] //Proceedings of ICCV. Vancouver, 13(2, Canada: IEEE, 2001: 524-531.
  • 5FALCAO A X, LOTUFO R, ARAUJO G. The image foresting transformation, Relatorio Tecnico IC-00-12 [R]. Campinasim, Brazil: University of Campinasm, 2000.
  • 6ROTHER C, BLAKE A, KOLMOGOROV V. Grabcut-interactive foreground extraction using iterated graph cuts [J]. ACM Transaction on Graphics, 2004, 23: 309-314.
  • 7LI Y, SUN J, TANG C K, et al. Lazy snapping[C]// Proceedings of ACM SIGGRAPH 2004. New York, NY, USA: ACM, 2004 : 303-308.
  • 8WANG Jingdong, WANG Fei, ZHANG Changshui, et al. Linear neighborhood propagation and its applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31(9) : 1600-1615.
  • 9WANG F, ZHANG C S. Label propagation through linear neighborhoods [J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20 (1): 55- 67.
  • 10CHAPELLE O, SCHOIKOPF B, ZIEN A. Semisupervised learning[M]. London, England: The MIT Press, 2006.

同被引文献46

  • 1杨凯,陈林,江泓,谈旭东,吴捷,汪洋,岳建国.DDR双能量减影普通胸片与骨组织像诊断肋骨骨折的价值[J].中国医学影像学杂志,2005,13(2):119-121. 被引量:31
  • 2KAPPADATH C S, SHAW C C. Dual-energy digital mammography., calibration and inverse-mapping tech- niques to estimate calcification thickness and glandular-tissue ratio [J]. Medical Physics, 2003, 30(6): 1110- 1117.
  • 3CHEN Xi, NISHIKAWA R, CHAN S, et al. Algo- rithmic scatter correction in dual-energy digital mam- mography for calcification imaging [EB/OL]. [2012- 03-02]. http://spiedigitallibrary, org/proeeedings/re- souree/2/psisdg/8313/1/83130E_1.
  • 4BLIZNAKOVA K, KOLITSI Z, PALLIKARAKIS N. Dual-energy mammography: simulation studies [J]. Physics in Medicine and Biology, 2006, 51 (10) : 4497- 4515.
  • 5HAMMERSTEIN G, MILLER D, WHITE D. Ab- sorbed radiation dose in mammography [J]. Radiolo- gy, 1979,130(2) : 485-491.
  • 6FEWELL T R, SHUPING R E. Handbook of mam- mographic X-ray spectra [M]. Washington DC, USA: HEW Publication (FDA), 1978. 56-69.
  • 7BERGER M, HUBBEL J,SELTZER S, et al. XCOM: photon cross sections database, NIST standard refer- ence database 8 (XGAM) [EB/OL]. [2011-11-25]. http//: www. physics, nist. gov/PhysRefData/Xcom/ Text/XCOM. html.
  • 8LUO Tao, MOU Xuanqin, TANG Shaojie. An applica- bility research on JND model [EB/OL]. (2006-03-07) [2011-11-25]. http://spiedigitallibrary, org/proceed-ings/ resource/ 2 / psisdg/ 614 6 /1/ 614 610_1.
  • 9Mitiche A, Ayed I B. Variational and Level Set Methods in Image Segmentation[M]. Berlin: Springer-Verlag, 2010: 33-178.
  • 10Zhang Kaibua, Zbang Lei, Song Huihui. Active Contour with Selective Local or Global Segmentation: a New Formulation and Level Set Method[J]. IEEE Trans on Image and Vision Computing, 2010, 28(5) : 668-676.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部