摘要
为了克服BP算法收敛速度慢的问题,提出了一种基于混合学习规则的BP算法,并采用模归一化方法,成功地定量组织了故障的学习样本,建立了能够定量分析发动机气路部件故障的人工神经网络(BPN)。通过分析测量系统随机误差的影响和实际试车数据的效验结果,表明该网络具有较强的推广能力及适应性,能基本满足故障定量诊断的要求,并具有较好的工程实用性。
In
order to overcome the convergent difficulty of BP algorithm, a new learning rule of BP algorithm
named hybrid rule is proposed.Normalizing the neural net input by its modulus, a fault library
with fault magnitude and a BPN which can diagnosis the turbofan gas path component faults
quantitatively are built successfully. A validation of the data of noisy measurements and the
real engine ground test is made. The diagnostic results show that the BPN can quantify the
magnitude of deterioration of the various engine components, detect the multiple faults and has
robust adaptation of random error in measurement system.
出处
《推进技术》
EI
CAS
CSCD
北大核心
1999年第4期48-52,共5页
Journal of Propulsion Technology
关键词
涡轮风扇发动机
空气系统
故障诊断
BP网络
Turbofan engine,Engine
air system component,Fault diagnosis,Artificial neural network