期刊文献+

一种探测推荐系统托攻击的无监督算法 被引量:22

An Unsupervised Algorithm for Detecting Shilling Attacks on Recommender Systems
下载PDF
导出
摘要 托攻击是当前推荐系统面临的重大安全性问题之一.开发托攻击探测算法已成为保障推荐系统准确性与鲁棒性的关键.针对现有托攻击探测算法无监督程度较低的局限,在引入攻击概貌群体效应的定量度量及基于此的遗传优化目标函数的基础上,将自适应参数的后验推断与攻击探测过程相融合,提出了迭代贝叶斯推断遗传探测算法,降低了算法探测性能对系统相关先验知识的依赖.实验结果显示这种算法能够有效探测各种常见攻击. Shilling attack is one of the significant security problems involved in recommender systems. Developing detection algorithms against shilling attacks has become the key to guaranteeing both the preciseness and robustness of recommender systems. Considering the low degree of unsupervised features the existing algorithms suffer from, this paper proposes an iterative Bayesian inference genetic detection algorithm (IBIGDA) through the introduction of the quantitative metric for the group effect of attack profiles and the corresponding object function for genetic optimization. This algorithm combines the posterior inference for the adaptive parameters with the process of attack detection, thus relaxes the dependence of the detection performance on the relating prior knowledge of the systems. Experimental results show that this algorithm can effectively detect shilling attacks of typical types.
出处 《自动化学报》 EI CSCD 北大核心 2011年第2期160-167,共8页 Acta Automatica Sinica
关键词 推荐系统 托攻击 群体效应 遗传算法 贝叶斯推断 Recommender system, shilling attack, group effect, genetic algorithm, Bayesian inference
  • 相关文献

参考文献18

  • 1Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extension. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
  • 2Li Q, Kim B M. Constructing user profiles for collaborative recommender system. In: Proceedings of the 6th Asia Pacific Web Conference. Hangzhou, China: Springer, 2004. 100--110.
  • 3Herlocker J L, Konstan J A, Borchers A, Riedl J. An algorithmic framework for performing collaborative filtering. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 1999. 230-237.
  • 4Mobasher B, Burke R, Bhaumik R, Sandvig J J. Attacks and remedies in collaborative recommendation. IEEE InteI1igent Systems, 2007, 22(3): 56-63.
  • 5Burke R, Mobasher B, Zabicki R, Bhaumik R. Identifying attack models for secure recommendation. In: Proceedings of the Beyond Personalization Workshop on the International Conference on Intelligent User Interfaces. San Diego, USA: ACM Press, 2005. 347-361.
  • 6Lam S K, Riedl J. Shilling recommender systems for fun and profit. In: Proceedings of the 13th International Conference on World Wide Web. New York, USA: ACM, 2004. 393-402.
  • 7O'Mahony M, Hurley N J, Kushmerick N, Silvestre G. Collaborative recommendation: a robustness analysis. ACM Transactions on Internet Technology, 2004, 4(4): 344-377.
  • 8Burke R, Mobasher B, Williams C, Bhaumik R. Classification features for attack detection in collaborative recommender systems. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2006. 542-547.
  • 9Moba-her B, Burke R, Bhaumik R, Williams C. Toward trustworthy recommender systems: an analysis of attack models and algorithm robustness. ACM Transactions on lnternet Technology, 2007, T(4): 1-38.
  • 10Burke R, Mobasher B, Bhaumik R, Williams C. Segment- based injection attacks against collaborative filtering recommender systems. In: Proceedings of the 5th IEEE International Conference on Data Mining. Washington D. C., USA: IEEE, 2005. 577-580.

同被引文献133

引证文献22

二级引证文献153

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部