期刊文献+

残差和为零的非线性回归法及其应用 被引量:3

Nonlinear Regression Method with Zero Sum of Residual Errors and Its Application
下载PDF
导出
摘要 指出传统拟线性回归和近代非线性最小二乘回归存在的问题,以及有截距的线性回归和无截距的线性回归之间的差别;提出通过附加残差和为零的强制条件改进非线性最小二乘回归的思想和方法,即残差和为零的非线性回归,并从理论上和实验数据上证明其优越性。得出的结论和结果为:对于幂函数、指数函数、双曲函数、对数函数和S型曲线等非线性函数,通过换元线性化进行的回归(简称拟线性回归)存在异方差问题;有截距的线性回归的残差和为零,无截距的线性回归和非线性回归的残差和通常不为零;残差和为零的非线性最小二乘回归之参数的精度高于普通非线性最小二乘回归参数的精度;对无截距的线性回归问题,通过附加残差和为零的强制条件后,参数的精度亦会提高。 The problems in quasi-linearization regression and non-linear least square regression,as well as the difference between the linear regression with intercept and the linear regression without intercept are pointed out.The thought and method to improve non-linear least square regression by adding one constraint to make the sum of residual errors become into zero are advanced,and the new method is named as the regression analysis with zero sum of residual errors.The advantages of the new method are proved by theory and experimental data.The main conclusions are as follows: for power function,exponential function, hyperbolic function and S-shape curve etc.,there is heteroscedaticity when they are making linear regression by substitution(quasi-linearization regression for short);the sum of residual errors is zero in the linear regression with intercept and the sum of residual errors is not zero usually in the linear regression without intercept;the parameter precision in the non-linear least square regression with zero sum of residual errors is higher than that in the non-linear least square regression in common use;the parameter precision can be also improved by adding one constraint to make the sum of residual errors become into zero in the linear regression without intercept.
作者 王仲锋 王琦
出处 《东北林业大学学报》 CAS CSCD 北大核心 2011年第2期125-127,130,共4页 Journal of Northeast Forestry University
关键词 回归分析 残差和 非线性最小二乘法 异方差性 拟线性回归 林木材积 Regression analysis Sum of residual errors Non-linear least square method Heteroscedaticity Quasi-linearization regression Tree volume
  • 相关文献

参考文献8

二级参考文献15

  • 1卜兆君,杨允菲,郎惠卿.小兴安岭泥炭沼泽甸杜种群分株的年龄结构与生长分析[J].东北师大学报(自然科学版),2004,36(4):98-104. 被引量:5
  • 2刘巍,王培麟.加权拟线性回归方法[J].宁夏工学院学报(自然科学版),1994,6(3):63-67. 被引量:5
  • 3盛骤 等.概率论与数理统计[M].北京:高等教育出版社,1993..
  • 4杨树勤.卫生统计学[M].北京:人民卫生出版社,1988..
  • 5张尧庭.概率统计(修订版)[M].中央广播电视大学出版社,1987..
  • 6李春喜.生物统计学[M].北京:科学出版社,2001.83-90.
  • 7方积乾.医药数理统计方法[M].北京:科技出版社,1997.158-176.
  • 8中国大百科全书编委会.中国大百科全书[M].数学卷.北京:中国大百科全书出版社,1998:593-597.
  • 9中国大百科全书编委会.中国大百科全书[M].第3卷.北京:中国大百科全书出版社,2002:1 735.
  • 10北京林业学院.数理统计[M].北京:中国林业出版社,1980.

共引文献28

同被引文献12

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部