期刊文献+

基于PHLST的红外与可见光图像融合算法 被引量:2

Fusion Algorithm of Visible and Infrared Images Based on Polyharmonic Local Sine Transform
下载PDF
导出
摘要 针对图像融合过程中边缘处理和区域一致性的问题,提出一种基于多重调和局部正弦变换的红外与可见光图像融合新算法.多重调和局部正弦变换的多重调和分量u代表了图像缓慢变化的"趋势",在空域进行加权融合;残差分量v体现了源图像的"波动",在傅里叶正弦变换域进行融合,以充分提取可见光图像的细节信息.由于不存在边缘效应,同时残差分量的傅里叶正弦系数具有高的消失矩,多重调和局部正弦变换应用于图像融合可取得较好的效果.多次红外与可见光图像融合实验证明所提算法有效提取了源图像有用信息,克服了多分辨率分析算法存在的边缘效应和区域一致性问题. Aiming at the regional homogeneity and processing of the edges in course of image fusion,a novel image fusion algorithm for visible and infrared images based on polyharmonic local sine transform is proposed.The polynomial u of the source images are fused with average in order to extract the global feature,and the residual v are fused in the field of Fourier sine transform to keep region homogeneity and extract details of the visible image.The polyharmonic local sine transform avoids the disadvantages of edge effect.Combing this advantage with the quickly decaying coefficients of the residuals,polyharmonic local sine transform is effective for image fusion.Experimental results show that the proposed algorithm improves the visual effect,and enhances the contrast and information entropy.
出处 《光子学报》 EI CAS CSCD 北大核心 2011年第1期107-111,共5页 Acta Photonica Sinica
基金 国家自然科学基金(No.60578053)资助
关键词 图像融合 多重调和局部正弦变换 傅里叶正弦变换 Image fusion Polyharmonic local sine transform Fourier sine transform
  • 相关文献

参考文献9

二级参考文献33

共引文献53

同被引文献25

  • 1AI.LRED L G, HOWARD T R,SERPEN G. Thermal imaging is the sole basis for repairing circuit cards in the F-16 flight control pancI[C]//AUTOTESTCON' 96, Dayton: Test Technology and Commercialization, 1996:418-424.
  • 2WANG Li,CHENG Baoying, WANG Kun. Research and design for infrared diagnostic system of aviation e- lectronic components[C]//2010 International Confer enee on Intelligent System Design and Engineering Ap- plication. Changsha : IEEE, 2010 : 140-142.
  • 3WANG Menghui, CHUNG Y K, SUNG W T. Using thermal image matter-element to design a circuit board fault diagnosis systern[J]. Expert Systems with Appli- cations, 2011,38(2) :6164-6169.
  • 4LI Bin, GUO Huijuan, LIU Boang, et al. Multi-sen- sor image registration based on geometric affine invari- ant[C]//Control and Decision Conference (CCDC). Guiyang:IEEE, 2013 :4472-4776.
  • 5FLORIAN D, K OCK H, PLANKENSTEINER K, et al. Auto focus and image registration techniques for infrared imaging of microeleetronie devices[J]. Measurment Sci- ence and Technology, 2013, 14(7) :285-290.
  • 6KERN J P, PATTICHIS M S. Robust multispectral image registration using mutual-information models [J]. IEEE Transactions on Geoscience and Remote Sensing,2007, 45(5) :1494-1505.
  • 7KIM Y S,LEE J H,RA J B. Multi-sensor image regis- tration based on intensity and edge orientation informa- tion[J].Pattern Recognition,2008, 41(11) :3356-3365.
  • 8LEE J H,KIM Y S,LEE D,et al.Robust CCD and IR image registration using gradient-based statistical in- formation[J]. IEEE Signal Processing Letters, 2010, 17 (4) : 347-350.
  • 9HRKAC T, KALAFATIC Z, KRAPAC J. Infrared- visual image registration based on corners and Haus dorff distance[M]. Berlin Heidelberg: Springer, 2007 : 383-392.
  • 10YANG Weiping, WANG Xuezhi, MORAN B, et al. Efficient registration of optical and infrared images via modified Sobel edging for plant canopy temperature es- timation[J]. Computers & Electrical Engineering, 2012, 38(5) :1213-1221.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部