期刊文献+

一种基于路径的划分聚类算法 被引量:6

A Path-based Clustering Algorithm of Partition
下载PDF
导出
摘要 针对传统的划分聚类算法不能够发现任意形状的簇的缺点,引入一种能够有效反映样本间相似度的距离度量——基于路径的距离度量,并设计了一种能够反映类内样本相似度大、类间样本相似度小的目标准则函数.实验表明,本文提出的基于路径划分的聚类算法与传统的k均值算法相比具有更好的聚类效果. Traditional partition clustering algorithm can't discover clusters of arbitrary shapes.For this problem,a new path-based similarity measure is proposed,which can reflect the similarity between samples effectively.A new objective criterion function is designed which can show that one sample is more similar to another from the same cluster than that from a different cluster.Experimental results show that the proposed method can get better clustering results than k-means algorithm.
出处 《信息与控制》 CSCD 北大核心 2011年第1期141-144,共4页 Information and Control
基金 国家自然科学基金资助项目(60971127) 陕西省教育厅科学研究计划资助项目(09Jk611) 西安理工大学校博士启动金资助项目(108-210905)
关键词 划分聚类 距离度量 目标准则函数 partition clustering distance measure objective criterion function
  • 相关文献

参考文献4

  • 1Cheu E Y, Kwoh C K, Zhou Z. On the two-level hybrid clustering algorithm[C]//International Conference on Artificial Intelligence in Science and Technology. Berlin, Germany: Springer Verlag, 2004.
  • 2Wang H L. An unsupervised purchase-based customer clustering method for e-supply chain[C]//IEEE International Conference on Service Operations and Logistics, and Informatics: vol. 1. Piscataway, NJ, USA: IEEE, 2008: 686-688.
  • 3Chang H, Yeung D Y. Robust path-based spectral clustering[J]. Pattern Recognition, 2007, 41(1): 191-203.
  • 4Yu X P, Zhou D Y, Zhou Y. A new clustering algorithm based on distance and density[C]//International Conference on Services Systems and Services Management: vol.2. Piscataway, NJ, USA: IEEE, 2005: 1016-1021.

同被引文献68

引证文献6

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部