摘要
针对传统的划分聚类算法不能够发现任意形状的簇的缺点,引入一种能够有效反映样本间相似度的距离度量——基于路径的距离度量,并设计了一种能够反映类内样本相似度大、类间样本相似度小的目标准则函数.实验表明,本文提出的基于路径划分的聚类算法与传统的k均值算法相比具有更好的聚类效果.
Traditional partition clustering algorithm can't discover clusters of arbitrary shapes.For this problem,a new path-based similarity measure is proposed,which can reflect the similarity between samples effectively.A new objective criterion function is designed which can show that one sample is more similar to another from the same cluster than that from a different cluster.Experimental results show that the proposed method can get better clustering results than k-means algorithm.
出处
《信息与控制》
CSCD
北大核心
2011年第1期141-144,共4页
Information and Control
基金
国家自然科学基金资助项目(60971127)
陕西省教育厅科学研究计划资助项目(09Jk611)
西安理工大学校博士启动金资助项目(108-210905)
关键词
划分聚类
距离度量
目标准则函数
partition clustering
distance measure
objective criterion function