期刊文献+

基于文化微粒群优化算法的DNA编码研究 被引量:1

Research on DNA Encoding Based on Cultural Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 对DNA编码约束进行研究,选择汉明测量以及相似度作为DNA序列集设计的主要约束,并结合连续性约束与GC Content约束,将序列集设计问题抽象为带有强约束的多目标优化问题,采用文化微粒群算法解决该多目标优化问题。仿真结果表明,该混合算法针对DNA编码序列设计问题,在求解最优值能力、解的稳定性方面都能取得较好的效果。 DNA encoding constrained is researched. H-measure and similarity is the principal constrained for DNA sequence design. Continuity and GC Content is also another constrained. DNA sequence design is presented to solve the multi-objective optimization problem. Particle Swarm Optimization based on Cultural Algorithm(PSO-CA) is proposed to solve the DNA sequence design as a multi-objective optimization problem. Simulation results indicate the hybrid algorithm does well on searching efficiency and key stability for DNA sequence design problem.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第3期10-12,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60903188) 上海市高校选拔培养优秀青年教师科研专项基金资助项目(sdl-07013) 高等学校博士点基金资助项目(20093120110008) 上海市重点学科建设基金资助项目(S30504)
关键词 微粒群优化算法 文化演化 DNA编码 汉明测量 Particle Swarm Optimization(PSO) algorithm cultural evolution DNA encoding H-measure
  • 相关文献

参考文献5

  • 1Adleman L.Molecular Computation of Solution to Combinatorial Problems[J].Science,1994,66(11):1021-1024.
  • 2Deaton R,Murphy R C,Garzon M,et al.Good Encodings for DNA-based Solutions to Combinatorial Problems[C]//Proceedings of the 2nd DIMACS Workshop on DNA-Based Computers.[S.1.]:IEEE Press,1996.
  • 3Shin S Y,Lee I H,Kim D.Multiobjective Evolutionary Optimization of DNA Sequences for Reliable DNA Computing[J].IEEE Transactions on Evolutionary Computation,2005,9(2):143-158.
  • 4马翠,周先东,杨大地.分层粒子群优化算法[J].计算机工程,2009,35(20):194-196. 被引量:10
  • 5马慧民,叶春明.基于文化进化的并行粒子群算法[J].计算机工程,2008,34(2):193-195. 被引量:12

二级参考文献14

  • 1马慧民,柳毅,叶春明.基于改进粒子群算法求解单级多资源约束生产批量计划问题[J].工业工程与管理,2005,10(6):66-70. 被引量:26
  • 2马慧民,叶春明.粒子群算法在贷款组合优化决策中的应用[J].计算机工程与应用,2006,42(14):219-221. 被引量:9
  • 3马慧民,叶春明,柳毅.基于改进粒子群算法的生产批量计划问题研究[J].计算机集成制造系统,2006,12(9):1417-1420. 被引量:21
  • 4冯林,颜世鹏,孙焘.邻域搜索的粒子群优化算法及其性能分析[J].计算机工程与科学,2006,28(12):72-73. 被引量:2
  • 5Shi Y, Eberhar R. A Modified Particle Swarm Optimizer[C]//Proc. of the IEEE International Conference on Evolutionary Computation. Piscataway, NJ, USA: IEEE Press, 1998.
  • 6Eberhard R, Kennedy J. A New Optimizer Using Particle Swarm Theory[C]//Proceedins of the 6th International Symposium on Micro Machine and Human Science. Piscataway, NJ, USA: [s. n.], 1995.
  • 7Kennedy J, Eberhard R. Particle Swarm Optimization[C]// Proceedins of IEEE Int'l Conference on Neural Networks. Piscataway, NJ, USA: [s. n.], 1995.
  • 8Reynolds R G An Introduction to Cultural Algorithms[C]// Proceedings of the 3rd Annual Conference on Evolutionary Programming. San Diego, California: [s. n.], 1994.
  • 9艾景波,腾弘飞.文化粒子群优化算法[Z].(2006-12-10).http://www.paper.edu.cn.
  • 10Reynolds R G, Michalewicz Z, Cavaretta M. Using Cultural Algorithms for Constraint Handling in GENOCOP[C]//Proceedings of the 4th Annual Conference on Evolutionary Programming. Cambridge, Massachusetts: MIT Press, 1995: 298-305.

共引文献20

同被引文献25

  • 1王国仁,葛健,徐恒宇,郑若石.基于二分频率变换的序列相似性查询处理技术[J].软件学报,2006,17(2):232-241. 被引量:8
  • 2CHAUDHURI P, DAS S. SWORDS: a statistical tool for analyzing large DNA sequences[J]. Journal of Biosciences, 2002, 27 (1) : 1-6.
  • 3CHAUDHURI P, DAS S. Statistical analysis of large DNA sequences using distribution of DNA words - J ]. Current Science, 2001,80(9) : 1 161-1 166.
  • 4PORIKLI FM. Clustering variable length sequences by eigen- vector decomposition using HMM [C]// Prec. of the int'l workshop on Structural and Syntactic Pattern Recognition. LNCS 3138, London: Springer-Verlag, 2004 : 352-360.
  • 5SRIKANT R, AGRAWAL R. Mining sequential patterns: Generalization and performance improvements[ C] //Proc. of the 15th Int'l Conf. on Extending Database Technology. London: Springer-Verlag, 1996 : 3-17.
  • 6PEI J, HAN J W, MORTAZAVI-ASL B, et al. Prefixspan: mining sequential patterns efficiently by prefix-projected growth[C] // Proc. of the 17th Int'l Conf. on Data Engineering. Washington: IEEE Computer Society, 2001: 215-224.
  • 7HAN J, PEI J, MORTAZAVI-ASL B, et al. Freespan: hequent pattern-projected sequential pattem mining [ C ] // Proc. of the 6th ACM SIGKDD Int'l Conf. on Knowledge Discovery in Databases. New York: ACM, 2000: 355-359.
  • 8ZAKI M J. SPADE: an efficient algorithm for mining frequent sequences[J]. Machine Learning, 2001,42(1-2) : 31-60.
  • 9ESTER M, ZHANG X. A top-down method for mining most specific frequent pattems in biological sequence data[C] // Proc. of the 4th SIAM Int'l Conf. on Data Mining, 2004: 90-101.
  • 10WANG K, XU Y, JEFFREY X Y. Sealable sequential pattern mining for biological sequences[ C]//Proc. of the 13th ACM Int'l Conf. on Information and Knowledge Management. New York: ACM Press, 2004: 178-187.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部