期刊文献+

基于分形理论的离群点检测 被引量:5

Outlier Detection Based on Fractal Theory
下载PDF
导出
摘要 现有离群点数据挖掘算法在高维空间效率比较低,针对上述不足,从离群点对数据集有序性的影响角度出发,在界定分形离群点含义的基础上,利用分形理论将离群数据挖掘作为一个优化分割问题进行处理。采用推广的G-P算法计算数据集的多重分形广义维数,利用贪婪算法的思想设计FDOM算法用于求解离群数据挖掘优化问题。实验结果证明,该算法能有效地解决离群点检测问题。 According to the weakness that traditional outlier data mining algorithms have lower efficiency in high-dimension space, from the viewpoint of outlier affecting orderliness of data set, this paper considers outlier mining as an optimization segmentation problem by using fractal theory. Based on the defining fractal outlier, Grassberger-Procaccia(GP) algorithm is used to calculate multi-fractal and general dimension. A greedy algorithm named FDOM is designed to solve the optimization problems of outlier mining. Experimental result shows that the algrithm is feasible to solve the problems of outlier mining.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第3期33-35,共3页 Computer Engineering
基金 国家教育部博士点基金资助项目(20060213004)
关键词 数据挖掘 离群点检测 分形理论 多重分形 data mining outlier detection fractal theory multifractal
  • 相关文献

参考文献8

  • 1徐雪松,刘耀宗,赵学龙,张宏,刘凤玉.基于核函数-主成分维数约减的离群点检测[J].计算机工程,2008,34(8):82-84. 被引量:1
  • 2杨新宇,曾明,赵瑞,吴航.分形理论在网络流量分析中的应用综述[J].计算机工程,2004,30(23):17-18. 被引量:2
  • 3孙亦南,刘伟军,王越超.基于分形理论和数学形态学的图像边缘检测方法[J].计算机工程,2003,29(20):20-21. 被引量:7
  • 4Ramaswamy S,Rastogi R,Kyuseok S.Efficient Algorithms for Mining Outliers from Large Data Sets[C]//Proe.of 2000 ACM SIGMOD International Conference on Management of Data.Dallas,Texas,USA:[s.n.],2000:93-104.
  • 5Angiulli F,Pizzuti C.Outlier Mining in Large High-dimensional Data Sets[J].IEEE Tram.on Knowledge and Data Engineering,2005,17(2):203-215.
  • 6He Zengyou,Deng Shengchun,Xu Xiaofei.An Optimization Model for Outlier Detection in Categorical Data[C]//Proc.of 2005International Conference on Intelligent Computing.Hefei,China:[s.n.],2005:400409.
  • 7Aggarwal C C,Philip S Y.Outlier Detection for High-dimensional Data[C]//Proc.of 2001 ACM SIGMOD International Confcfence on Management of Data.Santa Barbara,USA:[s.n.],2001:37-46.
  • 8Cristofor D,Simovici D.Finding Median Paaitions Using Information Theoretical-based Genetic Algofithms[J].Journal of Universal Computer Science,2002,8(2):153-172.

二级参考文献16

  • 1Pentland A P.Fractal-based Description of Natural Scenes. IEEE Trans on Pattem Analysis and Machine Intelligence.1984,PAMI-6(6):661-674.
  • 2Fisher Y.Fractal Image Compression:Theory and Application[M]. New York: Springer, 1995:58-96.
  • 3Saupe D.Optimal Hierarchical Partitions for Fractal Image Compression[A].lProc ICIP-98 IEEE Intemational Conference on Image Processi ng[C],Chicago, 1998- 10: 122-126.
  • 4Leland W E, Taqqu M S, Willinger W, et al. On the Self-similar Nature of Ethernet Traffic (Extended Version). IEEE/ACM Transactions on Networking, 1994,2(1):1- 15
  • 5Riedi R H, Vehel J L. Multifractal Properties of TCP Traffic: A Numerical Study. IEEE/ACM Trans. on Networking, 1997-01
  • 6Feldman. Data Network as Cascades: Investigating the Multifractal Nature of Internet WAN Traffic. Proceeding of the ACM/SIGCOMM',1998-09
  • 7Paxson V, Floyd S. Wide Area Traffic: The Failure of Poisson Modeling. IEEE/ACM Transactions on Nctworking, 1995, 3:226-244
  • 8Addie R. Fractal Traffic: Measurements, Modelling and Performance Evaluation. Proc. of INFOCOM'95, 1995:977-984
  • 9Beyer K, Goldstein J, Ramakri R, et al. When is Nearest Neighbor Meaningful?[C]//Proceedings of the 7th International Conference on Data Theory.[S. l.]: Springer, 1999: 217-235.
  • 10Li Yajun. Reforming the Theory of Invariant Moments for Pattern Recognition[J]. Pattern Recognition, 1992, 25(7): 723-730.

共引文献7

同被引文献36

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部