期刊文献+

椭圆曲线上的可验证多秘密共享方案 被引量:1

Verifiable Multi-secret Sharing Scheme on Elliptic Curves
下载PDF
导出
摘要 基于椭圆曲线提出一个可验证的多秘密共享方案。在该方案中每个参与者自己选择秘密份额,不需要安全信道,并且该方案是一个多次使用的方案,在一次加密过程中可以共享多个秘密。该方案的安全性基于椭圆曲线上RSA密码体制的安全性及椭圆曲线上离散对数问题的困难性。 This paper presents a verifiable multi-secret sharing scheme based on elliptic curves. In the scheme each participant chooses her/his shadow by her/himself, so the system does not need a secure channel. It is a multi-use scheme, which can share several secrets in one secret sharing process. The security of the proposed scheme is based on the security of the Elliptic Curve RSA cryptosystem(ECRSA) and the intractability of the Elliptic Curve Discrete Logarithm Problem(ECDLP).
出处 《计算机工程》 CAS CSCD 北大核心 2011年第3期124-125,128,共3页 Computer Engineering
基金 国家自然科学基金资助项目(10571113) 陕西省自然科学基金资助项目(2009JM8002) 陕西省教育厅科学研究计划自然科学基金资助项目(07JK375 2010JK829)
关键词 多秘密共享 可验证的多秘密共享 椭圆曲线RSA密码体制 椭圆曲线离散对数问题 multi-secret sharing verifiable multi-secret sharing Elliptic Curve RSA cryptosystem(ECRSA) Elliptic Curve Discrete Logarithm Problem(ECDLP)
  • 相关文献

参考文献10

  • 1Shamir A.How to Share a Secret[J].Communications of the ACM,1979,22(11):612-613.
  • 2Blakley G R.Safeguarding Cryptographic Keys[C]//Proceedings of the National Computer Conference.New York USA:[s.n.],1979:313-317.
  • 3Yang C C,Chang T Y,Hwang M S.A(t,n)Multi-secret Sharing Scheme[J].Applied Mathematics and Computation,2004,151(2):483-490.
  • 4Pang Liaojun,Wang Yumin.A New(t,n)Multi-Secret Sharing Scheme Based on Shamir'S Secret Sharing[J].Applied Mathematics and Computation,2005,167(2):840-848.
  • 5Harn L.Efficient Sharing(Broadcasting)of Multiple Secret[J].IEEE Proceedings on Computers and Digiml Techniques,1995,142(3):237-240.
  • 6Shao Jun,Cao Zhenfu.A New Efficient(t,n)Verifiable Multisecret Sharing(VMSS)Based on YCH Scheme[J].Applied Mathematics and Computation,2005,168(1):135-140.
  • 7Zhao Jianjie,Zhang Jianzhong,Zhao Rong.A Practical Verifiable Multi-secret Sharing Scheme[J].Computer Standards & Interfaces.2007,29(1):138-141.
  • 8Dehkordi M H,Mashhadi S.An Efficient Threshold Verifiable Multi-secret Sharing[J].Computer Standards & Interfaces,2008,30(3):187-190.
  • 9张艺林,张建中.可验证的(t,n)门限多重秘密共享方案[J].计算机工程,2009,35(15):141-142. 被引量:4
  • 10Koyama K,Maurer U,Okamoto T,et al.New Public-key Scheme Based on Elliptic Curves over the Ring Zn[C]//Proceedings of Advances in Cryptology-CRYPTO'91.Berlin,Germany:SpringerVerlag,1992:252-266.

二级参考文献9

  • 1许春香,肖国镇.门限多重秘密共享方案[J].电子学报,2004,32(10):1688-1689. 被引量:41
  • 2庞辽军,柳毅,王育民.一个有效的(t,n)门限多重秘密共享体制[J].电子学报,2006,34(4):587-589. 被引量:26
  • 3Shamir A.How to Share a Secret[J].Communications of the ACM,1979,22(11):612-613.
  • 4Blakley A.Safeguarding Cryptographic Keys[C]//Proc.of AFIPS'79.New York,USA:[s.n.],1979.
  • 5Chien H Y,Jan J K,Tseng Y M.A practical (t,n) Multi-secret Sharing Scheme[J].IEICE Transactions on Fundamentals,2000,E83-A(12):2762-2765.
  • 6Yang Chouchen,Chang Tingyi,Hwang Minshiang.A (t,n) Multisecret Sharing Scheme[J1.Applied Mathematics and Computation,2004,151(2):483-490.
  • 7Pang Liaojun,Wang Yumin.A New (t,n) Multi-secret Sharing Scheme Based on Shamir's Secret Sharing[J].Applied Mathematics and Computation,2005,167(2):840-848.
  • 8Zhao Jianjie,Zhang Jianzhong,Zhao Rong.A Practical Verifiable Multi-secret Sharing Scheme[J].Computer Standards and Interfaces,2007,29(1):138-141.
  • 9张建中,李文敏.一个新的有特权集的秘密共享方案[J].陕西师范大学学报(自然科学版),2008,36(3):7-9. 被引量:8

共引文献3

同被引文献15

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部