期刊文献+

区域谱元正压大气模式台风移动数值模拟试验 被引量:2

Numerical Simulation of Typhoon Movement with a Regional Spectral Element Barotropic Atmospheric Model
下载PDF
导出
摘要 针对地图投影坐标系下的正压原始方程组,将计算区域按三角形元进行分解,在三角形元内用三角形截断的勒让德多项式的积为插值函数对变量进行谱分解,发展出区域正压谱元大气模式.采用固定边界条件,以2006年5月15日08时500 hPa位势高度和风场为初值,在勒让德多项式最高阶数为3和7这两种情形下开展0601号台风"珍珠"移动的数值模拟试验.结果表明,数值模式模拟的风压场关系合理,数值模式的实现是成功的. Sharing advantages of spectral method and finite element method,a spectral element method is used in numerical study of geophysical fluid dynamics.By solving barotropic primitive equations with spectral element method,a regional barotropic atmospheric model is developed.In the model,computational domain is broken into a series of triangular elements,and variables in each element are represented as a high order Lagrangian interpolant with products of Legendre polynomials with triangular truncation.With geopotential and wind at 08 o’clock on 15 May 2006 on pressure level of 500 hPa taken as initial value and fixed lateral boundary condition,simulations of typhoon movement with maximum orders of Legendre polynomials 3 and 7 are carried out,respectively.It showns that the simulated relation between wind and pressure is rational and realization of the numerical model is successful.
作者 刘喜迎
出处 《计算物理》 EI CSCD 北大核心 2011年第1期35-40,共6页 Chinese Journal of Computational Physics
基金 国家自然科学基金(40876101) 国家863计划(2010AA012304)资助项目
关键词 正压原始方程 谱元方法 台风 数值模拟 barotropic primitive equation spectral element method typhoon numerical simulation
  • 相关文献

参考文献2

二级参考文献14

  • 1Noaek B R, Echelmann H. A global stability analysis of the steady and periodic cylinder wake [ J]. J Fluid Mech, 1994,270:297-330.
  • 2Patera A T, A spectral element method for fluid dynamics: laminar flow in a channel expansion [ J ]. J Comput Phys, 1984,54 : 468 -488.
  • 3Tuckerman L S, Barkley D. Bifurcation analysis for time-steppers [C]//Doedel E, Tuckerman L S, eds. Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems. New York: Springer, 2000,119:453- 466.
  • 4Kamiadakis G E, Israeli M, Orszag S A. High-order time-accurate splitting methods for incompressible Navier-Stokes equations[J]. J Comput Phys, 1991, 97:414 - 443.
  • 5Bergeon A, Henry D, BenHadid H, Tuckerman L S. Marangoni convection in binary mixtures with Soret effect[J]. J Fluid Mech,1998, 375:143- 177.
  • 6Sherwin S J, Ainsworth M. Unsteady Navier-Stokes solvers using hybrid spectral/hp element methods[J]. Applied Numerical Mathematics, 2000, 33(1 - 4) :357 - 363.
  • 7Ma D J, Sun D J, Yin X Y. A global stability analysis of the wake behind a rotating circular cylinder[J]. Chinese Physics Letter,2005, 22(8):1964 - 1967.
  • 8KnoU D A, Keyes D E. Jacobian-free Newton-Krylov methods: a survey of approaches and applications[ J]. J Comput Phys, 2004,193 : 357 - 397.
  • 9Eisenstat S C, Walker H F. Globally convergent inexact Newton methods[J]. SIAM J Optimization, 1994, 4:393-422.
  • 10Perniee M, Walker H F. NITSOL: a Newton iterative solver for nonlinear systems[J]. SIAM J Sci Comput, 1998, 19:302 - 318.

共引文献11

同被引文献1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部