期刊文献+

粒子滤波在复杂工业过程中的应用

Application of particle filter in complex industrial process
下载PDF
导出
摘要 复杂工业过程往往具有不确定性、非线性、大滞后、强耦合等特点,难以建立在线控制模型。为了克服复杂工业过程中的非高斯、强非线性等因素对系统建模的影响,利用粒子滤波算法对非线性、非高斯系统进行全局优化的优势,对系统模型进行优化,使系统模型能够更加准确地反映系统的真实状态,提出一种基于粒子滤波的径向基函数(RBF)神经网络控制方法,并将其应用到联合制碱生产过程的研究中。联合制碱碳化过程是一个典型的复杂工业过程,具有过程复杂、难以建立在线控制模型等突出特点,以联合制碱碳化过程为对象进行仿真试验研究,并与原先应用过的模糊神经网络控制方法进行效果对比,仿真结果表明:引入粒子滤波算法后,对复杂工业过程的控制更加有效,系统的控制精度和系统响应速度明显提高,可为解决一类复杂系统的建模与优化控制研究提供一条有效的技术途径。 Complex industrial process has the characteristics of uncertainty,nonlinear,non-Gaussian,large delay and strong coupling,so it is difficult to build linear control model.Particle filter(PF) algorithm can be used in global optimization of nonlinear,non-Gaussian system,making the model reflect the real system state accurately.This paper proposed a partical filter based radial basis function(RBF) neural network method,and applies it to the study of synthetic ammonia decarbornization production process.The synthetic ammonia decarbornization process is a complex industrial production process,whose on-line control model is difficult to establish.Some simulation study with the synthetic ammonia decarbornization has shown that after using PF it has better performance than using only fuzzy neural network.The result also shows that the system is more effectively controlled after using PF algorithm.It provides an efficient way for the complex system modelling and optimization control research.
出处 《河北科技大学学报》 CAS 北大核心 2011年第1期47-51,56,共6页 Journal of Hebei University of Science and Technology
基金 河北省自然科学基金资助项目(F2009000728)
关键词 粒子滤波 复杂工业过程 RBF神经网络 联合制碱碳化过程 particle filter complex industrial process RBF neural network the synthetic ammonia decarbornization
  • 相关文献

参考文献8

二级参考文献18

  • 1杨志,邓仁明,李太福,郭兵.炉前烟尘不确定性除尘风机控制系统[J].仪器仪表学报,2001,22(z2):435-437. 被引量:7
  • 2王耀南,姚志红.神经网络自适应模糊控制器设计与应用[J].湖南大学学报(自然科学版),1996,23(1):101-106. 被引量:4
  • 3杨斌,邓洪敏.基于神经网络的模糊控制[J].四川大学学报(自然科学版),1996,33(2):165-169. 被引量:8
  • 4H C Ran.The Intelligent Control for Dust Trap System of Boiler[A].Cong Shuang.Proceedings of the 3rd Word Congress on Intelligent Control and Automantion[C].合肥:中国科技大学出版社,2000.423-424.
  • 5孙增析 张再兴 邓志东.智能控制理论与技术[M].北京:清华大学出版社,1997..
  • 6Real R M,Bayesian Learning for Neural Networks[R].Lecture Notes in Statistics No.118,Springer-Verlag,New York.1996.
  • 7Miiller P,Insua R.Issues in Bayesian analysis of neural network models[J].Neural Computation,1998,10:571-592.
  • 8Rughooputh H.Extended Kalman filter learning algorithm for hyper-complex multi-layered neural networks[J].IEEE Proc.1999,3:1824-1828.
  • 9JFG de Freitas,Niranjan M,Gee AH,Doucet A.Sequential Monte Carlo Methods for Optimisation of Neural Network Models[DB/OL].http://www-sigproc.eng.cam.ac.uk/smc/papers.html,2002-12-06/2005-02-08.
  • 10Andrieu C,Freitas N D.Sequential Monte Carlo for model selection and estimation of neural networks[J].ICASSP,2000,6:3410-3413.

共引文献332

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部