期刊文献+

Banach空间内广义混合隐平衡问题组的可解性(英文) 被引量:3

Approximation Solvability of System of Generalized Mixed ImplicitEquilibrium Problems in Banach Spaces
下载PDF
导出
摘要 在Banach空间内引入和研究了一类新的涉及非单调集值映像的广义混合隐平衡问题组.首先推广了由Moudafi在Hilbert空间内引入的Yosida逼近概念到自反Banach空间.利用这一Yosida逼近概念,考虑了一个广义Wiener-Hopf方程问题组并且证明了它与此广义混合隐平衡问题组是等价的.由使用广义Wiener-Hopf方程问题组的不动点陈述,建议和分析了求解广义混合隐平衡问题组的一类新的迭代算法.在适当条件下,证明了由算法生成的迭代序列的强收敛性.这些结果是新的并且统一和推广了这一领域内某些最近结果. A new system of generalized mixed implicit equilibrium problems involving non-monotone set-valued mappings is introduced and studied in real Banach spaces.The notion of the Yosida approximation introduced by Moudafi in Hilbert spaces is first generalized to reflexive Banach spaces.Further,by using the notion of the Yosida approximation,a system of generalized Wiener-Hopf equations problems is considered and its equivalence with the system of generalized mixed implicit equilibrium problems is also proved.By using a fixed point formulation of the system of generalized Wiener-Hopf equations problems,a new iterative algorithm for solving the system of generalized mixed implicit equilibrium problems is suggested and analyzed.The strong convergence of the iterative sequences generated by the algorithm is proved under suitable conditions.These results are new and unify and generalize some recent results in this field.
作者 丁协平
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第1期1-9,共9页 Journal of Sichuan Normal University(Natural Science)
基金 四川省教育厅自然科学重点研究基金(SZD0406)资助项目
关键词 广义混合隐平衡问题组 YOSIDA逼近 广义Wiener-Hopf方程问题组 迭代算法 自反BANACH空间 system of generalized mixed implicit equilibrium problems Yosida approximation system of generalized Wiener-Hopf equation problems iterative algorithm reflexive Banach spaces
  • 相关文献

参考文献1

二级参考文献15

  • 1Noor M A.Solvability of multivalued general mixed variational inequalities[J].J Math Anal Appl,2001,261(2):390-402.
  • 2Noor M A.Some predictor-corrector algorithms for multi-valued variational inequalities[J].J Optim Theory Appl,2001,108(3):659-671.
  • 3Noor M A.A Predictor-corrector algorithms for general variational inequalities[J].Appl Math Lett,2001,14:53-58.
  • 4Noor M A.Iterative methods for generalized variational inequalities[J].Appl Math Lett,2002,15:77-82.
  • 5Noor M A.Mixed quasi variational inequalities[J].Appl Math Comput,2003,146:553-578.
  • 6Noor M A.Multivalued general equilibrium problems[J].J Math Anal Appl,2003,283(1):140-149.
  • 7DING Xie-ping.On generalized mixed variational-like inequalities[J].J Sichuan Normal Univ,2003,22(5):494-503.
  • 8DING Xie-ping.Predictor-corrector iterative algorithms for solving generalized mixed variational-like inequalities[J].Appl Math Comput,2004,152(3):855-865.
  • 9DING Xie-ping.Predictor-corrector iterative algorithms for solving generalized mixed quasi-variational-like inequalities[J].J Comput Appl Math,2005,182(1):1-12.
  • 10Noor M A.Auxiliary principle technique for equilibrium problems[J].J Optim Theory Appl,2004,122(2):371-386.

共引文献15

同被引文献29

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部