期刊文献+

统计流形在切丛上提升的等积仿射结构

Complete Lifts Equiaffine Structure on Tangent Bundle over Statistical Manifolds
下载PDF
导出
摘要 具有等积仿射结构的统计流形在贝叶斯统计理论中有着重要应用,主要讨论统计流形及其切丛上的等积仿射结构,得到了统计流形的无挠仿射联络和其在切丛上提升的仿射联络的等积仿射性是一致的. The statistical manifolds with equiaffine structures have important applications to Bayesian statistics.This paper proves that the torsion-free affine connection on statistical manifolds is equiaffine if and only if its complete lifts connection is an equiaffine connection.
作者 秦华军 舒级
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第1期10-12,共3页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10926034和10771151)资助项目
关键词 统计流形 对偶联络 等积仿射结构 完全提升 切丛 dual connection equiaffine structure statistical manifolds complete lifts tangent bundle
  • 相关文献

参考文献15

  • 1Zhang J.A note on curvature of α-connectoins of a statistical manifold[J].Ann Inst Stat Math,2007,59:161-170.
  • 2Amari S,Nabaoka H.Methods of Information Geomtry[M].Oxford:Oxford University Press,2000.
  • 3Matsuzoe H,Takeuchi J,Amari S.Equiaffine structures on statistical manifolds and Bayesian statisticals[J].Differential Geometry and Its Applications,2006,24(6):567-578.
  • 4Nomizu K,Sasaki T.Affine Differential Geometry-Geometry of Affine Immersions[M].Cambridge:Cambridge University Press,1994.
  • 5Uohashi K,Ohara A,Fujii T.1-conformally flat statistical submanifolds[J].Osaka J Math,2000,37:501-507.
  • 6Izumi H.Conformal-projective flat statistical structures on tangent bundle over statistical manifolds[J].Differential Geometry and Its Applications,2007,28:239-251.
  • 7Matsuzoe H,Gddotuand I,Inoguchi J.Statistical structures on Tangent bundles[J].Apphed Science,2003,5(1):55-75.
  • 8Nassar H A,Abd-Ellsh N H,Moustafa H M.Information geometry and statistical manifold[J].Chaos,Solitons and Fractals,2003,15:161-172.
  • 9Zhong Feng-wei,Sun Hun-fei,Zhang Zhen-ning.An information geometry algorithm for distribution control[J].Bull Brazil Math Soc,2008,39(1):1-10.
  • 10Matsuzoe H.Computational Geometry from the Viewpoint of Aflfine Geometry[M].Berlin,Heidelberg:Springer-Verlag,2009:103-123.

二级参考文献7

  • 1Jeffierys H.Theory of probability[M].USA:California Press,1961.
  • 2Takeuchi J,Amari S.α-prior and its properties[J].IEEE Trans Inform Theory,2005,51:1011.
  • 3Nomizu K,Sasaki T.Affine diffierential geometry of affine immersions[M].Cambridge:Cambridge University Press,1994.
  • 4Matsuzoe H,Takeuchi J,Amari S.Equiaffine structures on statistical manifolds and Bayesian statistics[J].Diff Geom Appl,2006,536:1.
  • 5Lauritzen S.L.Statistical manifolds[C]∥Diffierential Geometry in Statistical Inferences.New York:Cambridge University Press,1994.
  • 6Amari S,Nagaoka H.Method of information geometry[M].Oxfold:Oxfold University Press,2000.
  • 7Li A M,Simon U,Zhao G S.Global affine diffierential geometry of hypersurfaces[M].New York:Walter de Gruyter,1993.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部