期刊文献+

各向异性Heisenberg群上一类强Hardy型不等式及其应用 被引量:1

Sharp Hardy Type Inequalities on Anisotropic Heisenberg Groups and Applications
下载PDF
导出
摘要 通过推广、改进欧氏空间中的思想,对各向异性Heisenberg群上的Hardy型不等式给出了一个新证明.注意到原有许多结果中,由于使用方法的原因把原点排出在外,首先构造了一类C1向量场,结合逼近的思想不仅改进了这个缺陷而且得到常数cpQ,p的最佳性.作为应用,讨论了一类p次非线性算子的正定性与下无界性. This paper presents a new proof of a class of Hardy type inequalities on anisotropic Heisenberg groups.Using regularization method by the careful choice of a suitable vector field in C^1 and the approximating method,the obtained results not only contain the well-known results for sublaplace operator but also remedy a defect that eliminates the zero point in the existing results.Furthermore,the results get the best constant c^pQ,p.As applications,the positive property and the unbounded property from below for p-degenerate subelliptic operator are discussed.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第1期38-42,共5页 Journal of Sichuan Normal University(Natural Science)
基金 浙江省自然科学基金(Y606144)资助项目
关键词 各向异性Heisenberg群 正则化 强Hardy型不等式 anisotropic Heisenberg groups regularization sharp hardy type inequality
  • 相关文献

参考文献1

二级参考文献15

  • 1Magnus, W., Obcrhcttingcr, F., Soni, R. P.: Fornmlas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag, Berlin-New York-Heidelberg, 1964.
  • 2Hormander, L.: Hypoelliptic second-order differential equations. Acta Math., 119, 147-171 (1967).
  • 3Calin, O., Chang, D. C., Tie, J.: Local Nonsolvability for Gruhsin type operators, preprint, (2003).
  • 4Andrews, G., Askey, H., Roy, H.: Special Functions, Encyclopedia of mathematics and its applications #71,Cambridge University Press, Cambridge, United Kingdom, 1999.
  • 5Beals, R., Gaveau, B., Grcincr, P. C.: Complex Hamiltonian mechanics and parametrics for subclliptic Laplacians, Ⅰ,Ⅱ,Ⅲ. Bull. Sci. Math., 121, 1 36, 97 149, 195-259 (1997).
  • 6Beals, R., Greiner, P. C.: Calculus oll Heisenberg manifolds, Ann. Math. Studies #119, Princeton University Press, Princeton, New Jersey, 1988.
  • 7Chang, D. C., Tie, J.: Estimates for spectral projection operators of the sub-Laplacian oll the Heisenberg group. J. Analyse Math., 71, 315-347 (1997).
  • 8Chang, D. C., Tie, J.: Estimates for powers of sub-Laplacian on the non-isotropic Heisenberg group. J. Geom. Anal., 10, 653-678 (2000).
  • 9Folland, G. B., Stein, E. M.: Estimates for the δb complex and analysis on the Heisenberg group. Comm.Pure Appl. Math,, 27, 429-522 (1974).
  • 10Gaveau, B.: Principe de moindrc action, propagation de la chaleur et estimees sous elliptiques sur certains groupes nilpotents. Acta Math., 139, 95-153 (1977).

共引文献6

同被引文献19

  • 1Li H, Mee R W. Better foldover fractions for resolution III 2k-p designs[ J]. Technometrics ,2002,44:278 - 283.
  • 2Li W, Lin D K J. Optimal foldover plans for two -level fractional factorial designs[ J]. Technometrics ,2003 ,45 :142 - 149.
  • 3Li W, Lin D K J, Ye K Q. Optimal foldover plans for non -regular orthogonal designs [ J 1- Technometrics,2003 ,45 :347 -351.
  • 4Jacroux M. Maximal rank minimum aberration foldover plans for 2m-k fractional factorial designs[J]. Metrika,2007,65:235-242.
  • 5Wang B, Robert G M, John F B. A note on the selection of optimal foldover plans for 16 - and 32 -mn fractional factorial de- signs[ J. J Statistical Planning and Inference,2010,140 : 1497 - 1500.
  • 6Robert G M, John F B. Optimal foldover plans for two - level fractional factorial split - plot designs [ J ]. J Quality Technology, 2008,40:227 - 240.
  • 7Jacroux M. Reverse foldovers for blocked 2-k fractional factorial designs[ J. Communications in Statistics :Theory and Methods, 2011,40:2799 - 2808.
  • 8Li F, Mike J. Optimal foldover plans for blocked 2-k fractional factorial designs[J]. J Statistical Planning and Inference,2007, 137:2439 - 2452.
  • 9Ai M Y, Xu X, Wu C F. Optimal blocking and foldover plans for regular two -level designs [ J ]. Statistiea Sinica,2010 ,20 :183 -207.
  • 10Fang K T, Lin D K J, Qin H. A note on optimal foldover design [ J ]. Statistics Probability Letters ,2003,62:285 -250.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部