期刊文献+

非线性Schrdinger耦合方程组的同宿轨 被引量:2

The Homoclinic Orbit for the Nonlinear Schrdinger Equations Coupling System
下载PDF
导出
摘要 非线性Schrdinger方程作为非线性发展方程的典型代表之一,受到了国内外学者的长期关注.人们已经得到了它的各种精确解,如行波解、孤波解、扭波解、同宿轨解等.但是,对非线性Schrdinger耦合方程组的研究却很少,未见其同宿轨解的研究成果.利用Hirota双线性方法,研究了非线性Schrdinger耦合方程组的同宿轨,获得了同宿轨的解析式. The nonlinear Schrodinger equation is one of the typical examples for the study of nonlinear equation and it has received the domestic and foreign scholar's long-term attention.All varieties of exact solutions for the nonlinear Schrdinger equation are obtained,such as travel wave solutions,solitary wave solutions,twisted wave solutions,homoclinic orbits.However,the study on the nonlinear Schrodinger equation coupling system is rare,no research results on homoclinic orbit solution are published.In this paper,using the Hirota's bilinear method,the homoclinic orbit for the nonlinear Schrdinger equations coupling system is investigated,the analytic expression for the homoclinic orbit is obtained.
作者 李正彪 夏莲
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第1期59-62,共4页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11061028) 云南省教育厅科学研究基金(08Y0302)资助项目 曲靖师范学院科学研究基金(2008MS018)对本文给予了资助
关键词 同宿轨 Schrdinger方程 HIROTA方法 homoclinic orbit Schrodinger equation Hirota method
  • 相关文献

参考文献21

  • 1Fu H M,Dai Z D.Exact chirped solitary-wave solution for Ginzburg-Landau equation[J].Communication in Nonlinear Science and Nmnerical Simulation,2010,15(6):1462-1465.
  • 2Liu C F,Dai Z D.Exact periodic solitary wave solution for the(2+1)-dimensional Boussinesq equation[J].J Math Anal Appl,2010,367(2):444-450.
  • 3Dai Z D,Lin S Q,Fu H M.Exact three-wave solution for the KP equation[J].Appl Math Comput,2010,216(5):1599-1604.
  • 4He J H,Wu X H.The exp-function method for nonlinear wave equation[J].Chaos Solitons Frac,2006,30:700-708.
  • 5Dai Z D,Liuj,Zeng X P.Periodic kink-wave and kinky periodic-wave solution for the Jimbo-Miwa equation[J].Phys Lett,2008,A372:5984-5986.
  • 6Fu H M,Dai Z D.The double exp-function method and its applications[J].Int J Nonl Sci Num,2009,10:927-933.
  • 7钱天虹,刘中飞,韩家骅.具有5次强非线性项波方程的精确解[J].安徽大学学报(自然科学版),2004,28(6):37-41. 被引量:4
  • 8王伟,吴土明,孙建华.一般非线性Schrdinger方程的显式孤立波解[J].应用数学学报,2004,27(2):281-290. 被引量:4
  • 9Dai Z D,Li Z T,Liu Z J.Exact cross kink-wave solutions and resonance for Jimbo-Miwa equation[J].Physica,2007,A384:285-290.
  • 10熊莉,张健.广义(3+1)维立方Schrdinger方程新的精确解[J].四川师范大学学报(自然科学版),2009,32(1):36-38. 被引量:3

二级参考文献108

共引文献65

同被引文献21

  • 1李志斌,张善卿.非线性波方程准确孤立波解的符号计算[J].数学物理学报(A辑),1997,17(1):81-89. 被引量:114
  • 2BEMARDOM, BUDD C J,CHAMPNEYS A R, et al. Piecewise - smooth Dynamical Systems:Theory and Application[M]. ApplMath Sci Series, 163. Berlin: Springer - Verlag,2008.
  • 3AMEODO A, COULLET P,TRESSER C. Possible new strange attractors with spiral structure[ J]. Commun Math Phys, 1981,79(4):573 -579.
  • 4ARNEODO A, COULLET P,TRESSER C. Oscillators with chaotic behavior:an illustration of a theorem by Shilnikov[ J] . J StatPhys,1982,27(1) :171 -182.
  • 5SIMPSON D J W, MEISS J D. Andronov - Hopf bifurcations in planar piecewise - smooth continuous flows[ J]. Phys Lett,2007,A371(3):213 -220.
  • 6FREIRE E,PONCE E,RODRIGO F, et al. Bifurcation sets of symmetrical continuous piecewise linear systems with threezones [ J ] . Intemat J Bifur Chaos Appl Sci Engrg, 2002,12(8) :1675 - 1702.
  • 7CARMONA V,FREIRE E, PONCE E, et al. On simplifying and classifying piecewise linear systems[ J]. IEEE Trans CircuitsSystems I: Fund Theory Appl,2002,49(5) :609 -620.
  • 8SHILNIKOV L P. A case of the existence of a countable number of periodic motions[ J]. Sov Math Dokl,1965,6:163 - 166.
  • 9SILVA C P. Shilnikov theorem - a tutorial[ J]. IEEE Trans Circuits Syst, 1993,40( 10) :675 -682.
  • 10VITALY V,BOGDAN K. Existence of heteroclinic orbits for systems satisfying monotonicity conditions[ J]. Nonlinear Anal,2003,55(4):467 - 491.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部