期刊文献+

一种基于GA-BP算法的PIDNN控制策略 被引量:4

A PID Neural Network Control Strategy Based on GA-BP Algorithm
下载PDF
导出
摘要 为改善常规PID控制器对非线性对象的控制性能,提出一种基于GA-BP算法的PID神经网络(PID NeuralNetwork,PIDNN)控制策略。将PID控制规律融入神经网络,构成一种PIDNN控制器,并利用GA-BP算法来对其进行参数优化。采用所设计的PIDNN控制器对一种非线性系统进行仿真研究,仿真结果表明:GA-BP算法收敛速度快,所设计的PIDNN控制器与常规PID控制器相比,其控制稳定性和快速性等性能都得到了很大改善。 A kind of PID neural network(PIDNN) control strategy based on GA-BP algorithm is presented to improve the performance of the routine PID on nonlinear object.The PID control law is incorporated with the neural network to produce the PIDNN controller,whose parameters are optimized by the GA-BP algorithm.In order to verify the validity of the PIDNN controller and the corresponding PIDNN control strategy,the PIDNN controller is adopted to carry out simulation researches to a kind of nonlinear system.The simulation results indicate that the GA-BP algorithm convergence speed is fast,its control stability and speed of the PIDNN controller based on GA-BP algorithm are obviously better than the routine PID controller.
出处 《兵工自动化》 2011年第2期66-69,共4页 Ordnance Industry Automation
关键词 神经网络 遗传算法 BP算法 GA-BP算法 neural network genetic algorithm BP algorithm GA-BP algorithm
  • 相关文献

参考文献6

  • 1张秀玲.神经网络非线性系统模型参考自适应控制器统一设计法[J].控制与决策,2002,17(2):151-154. 被引量:10
  • 2Anthony J.Calise.Neural Networks In Nonlinear Aircraft Flight Control[J].IEEE AES Systems Magazine,July 1996.
  • 3舒怀林.基于PID神经网络的非线性时变系统辨识[J].自动化学报,2002,28(3):474-476. 被引量:23
  • 4Sajad Najafi Ravadanegh.A New GA-Based and Graph Theory Supported Distribution System Planning.ICIC 2008(15):7-14.
  • 5Yang Zhi,Jie Li,Li Erguo.Adaptive internal model control based on the artificial neural network for time-varying delay systems[J].J of LAN Zhou University (Natural Sciences),2000,36(4):38-44.
  • 6A.Blanco,M.Delgado,M.C.Pegalajar.A real-coded genetic algorithm for training recurrent neural networks[J].Neural Networks 14 (2001):93-105.

二级参考文献9

共引文献31

同被引文献29

  • 1肖俊芳,王耀青.一种激励函数可调的快速BP算法[J].自动化技术与应用,2002(6):26-29. 被引量:10
  • 2左为恒,郑美容.恒压供水系统中智能控制方式的应用研究[D].重庆:重庆大学,2009.
  • 3JI Hua, LI Zhi-yong. Design of neural network PID controller based on brushless DC motor [C]//Intelligent Computation Technology and Automation, 2009. ICICTA'09. Second International Conference on. IEEE, 2009 (3) :46-49.
  • 4庞中华,崔红.系统辨识与自适应控制MATLAB4仿真[M].北京:北京航空航天大学出版社,2013.
  • 5WANG Hong-jun,LI Yan-wei,YUE You-jun. Application of BP neural network intelligent PID controller based on GA in electrode regulator systems of electric arc furnace [C]// Communication Software and Networks (ICCSN), 2011 IEEE 3rd International Conference on. IEEE, 2011:198-202.
  • 6LIN Qing-song, YAO Yu-fei, WANG Jun-xiao. Simulation and application of neural network PID auto-Tuning controller in servo-system [C]//Database Technology and Applications (DBTA), 2010 2nd International Workshop on. IEEE, 2010:1-4.
  • 7李恩玉,杨平先,孙兴波.基于激活函数四参可调的BP神经网络改进算法[J].微电子学与计算机,2008,25(11):89-93. 被引量:11
  • 8张学燕,高培金,刘勇.BP神经网络PID控制器在工业控制系统中的研究与仿真[J].自动化技术与应用,2010,29(5):9-12. 被引量:28
  • 9王敬志,任开春,胡斌.基于BP神经网络整定的PID控制[J].工业控制计算机,2011,24(3):72-73. 被引量:38
  • 10车江鸽,骆艳洁,麦云飞.EPS试验台模糊PID控制器设计[J].制造业自动化,2011,33(24):1-3. 被引量:3

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部