期刊文献+

无人机航路规划算法研究 被引量:6

Path Planning Algorithm for UAV
下载PDF
导出
摘要 针对无人机航路规划问题,研究了一种基于元胞蚂蚁算法的无人机航路规划方法。元胞蚂蚁算法对基本蚁群算法进行了系列改进,并将元胞邻居演化和改进后的蚂蚁寻优相结合,有效地克服了基本蚁群算法的收敛速度慢、易于过早陷入局部最优的缺点,提高了算法的运算精度,从而为解决复杂战场环境下无人机航路规划这一多约束多目标优化问题提供了一条可行的途径。 It was proposed to use cellular ant algorithm in path planning of Unmanned Aerial Vehicle (UAV). A series of improvements were made in cellular ant algorithm on the basis of the basic ant colony algorithm. Then the improved ant colony algorithm was used together with evolutionary rule of cellular in cellular space. The simulation results showed that the cellular ant algorithm could help the solutions to escape from their local optimum and could find a better path at higher convergence speed and with a higher precision. Therefore, the cellular ant algorithm is an effective method for such kind of multi-objective optimization problems with multiple constraints as UAV path planning under complex environment.
出处 《电光与控制》 北大核心 2011年第2期8-12,17,共6页 Electronics Optics & Control
基金 航空电子系统综合技术国防科技重点实验室和航空科学基金资助项目(20085584010)
关键词 无人机 航路规划 元胞蚂蚁算法 UAV path planning cellular ant algorithm
  • 相关文献

参考文献10

二级参考文献46

共引文献59

同被引文献70

引证文献6

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部