期刊文献+

机动再入目标的FGPF-BLUE跟踪

FGPF-BLUE Tracking for Maneuvering Reentry Targets
下载PDF
导出
摘要 机动再入目标的运动具有明显的非线性,其观测又往往在传感器坐标系下进行,构成强非线性的跟踪问题。为了克服扩展卡尔曼滤波和粒子滤波在跟踪精度和实时性方面的缺点,提出了一种新型的非线性跟踪算法。新型的FGPF-BLUE滤波将快速高斯粒子滤波的预测步骤与最优线性无偏估计的更新步骤相结合,是一种半蒙特卡罗滤波方法。建立了机动再入目标的动态模型,并分别应用扩展卡尔曼滤波、粒子滤波和FGPF-BLUE滤波实现了对该目标的跟踪。通过对各种滤波方法精度和消耗时间的对比,可知新方法的稳态性能优于其他两种算法,实时性优于粒子滤波。 The tracking problems of maneuvering reentry targets often turn out to be highly nonlinear problems, for both of the dynamic and the observation models could be nonlinear. In order to overcome the disadvantages of Extended Kalman Filter (EKF) and Particle Filter (PF) in precision and real-time performance, a new nonlinear filter was proposed. The new FGPF-BLUE ( Fast Gaussian Particle Filter-Best Linear Unbiased Estimator) filter was constructed by combining predictive steps of the FGPF and the updating steps of the BLUE and was, therefore, maneuvering reentry target was established and comparison of those filters shows that the new consumes less time than PF. a " semi-Monte Carlo" method. The dynamic model of a was processed by EKF, PF and FGPF-BLUE filter. The filter has a higher steady-state precision than others and consumes less time than PF.
出处 《电光与控制》 北大核心 2011年第2期60-63,96,共5页 Electronics Optics & Control
基金 航空科学基金(20090196005)
关键词 再入目标跟踪 机动再入目标 快速高斯粒子滤波 最优线性无偏估计 reentry target tracking maneuvering reentry target Fast Gaussian Particle Filter (FGPF) Best Linear Unbiased Estimator (BLUE)
  • 相关文献

参考文献10

  • 1LIGGINS M E, HALL D L, LLINAS J. Handbook of multisensor data fusion : theory and practice [ M ]. 2nd ed. CRC press, 2009.
  • 2KOTECHA J H, DJURIC P M. Gaussian particle filtering [J]. IEEE Tran on Signal Processing, 2003, 51 (10): 2592-2601.
  • 3陈鹏,钱徽,朱淼良.一种快速高斯粒子滤波算法[J].华中科技大学学报(自然科学版),2008,36(S1):291-294. 被引量:9
  • 4ZHAO Z L, LI X R, JILKOV V P. Best linear unbiased filtering with nonlinear measurements for target tracking [J]. IEEE Trans on Aerospace and Electronic System, 2004,40(4) : 1324-1336.
  • 5ZHAO Z L , LI X R . Optimal linear unbiased filtering with polar measurements for target tracking [ C]//International Conf. on Information Fusion, 2002 : 1527-1534.
  • 6夏克寒,许化龙,张朴睿.粒子滤波的关键技术及应用[J].电光与控制,2005,12(6):1-4. 被引量:34
  • 7徐长爱,李尚生,殷勇,刘军.基于粒子滤波的弹道目标跟踪[J].电光与控制,2008,15(10):81-83. 被引量:7
  • 8FARINA A, RISTIC B, BENVENUTI D. Tracking a ballistic target: comparison of several nonlinear filters [ J ].IEEE Transactions on Aerospace and Electronic Systems, 2002, 38 (3) : 854-867.
  • 9LI X R, JILKOV V P. A survey of maneuvering target tracking, Part II : ballistic target models [ C ]//International Conf. on Signal and Data Processing of small targets,2001:559-581.
  • 10FARINA A, DEL GAUDIO M G, D'Ella U, et. al. Detection and Tracking of Ballistic Target [ C ]//Radar Conf, 2004:450-456.

二级参考文献31

  • 1夏克寒,许化龙,张朴睿.粒子滤波的关键技术及应用[J].电光与控制,2005,12(6):1-4. 被引量:34
  • 2王志贤.最优估计与系统辨识[M].西安:第二炮兵工程学院,2003..
  • 3GORDON N J, SALMOND D J,SMITH A F M. A novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEE Proceedings on Radar and Signal Processing, 1993,140(2): 107-113.
  • 4DOUCET A. On Sequential Simulation-Based Methods for Bayesian Filtering.[DB/OL].http://www.researchindex.com.
  • 5R Van der MERVE. A Doucet the Unscented Particle filter. Advances in Neural Information Processing Systems[ M]. MIT,2000.
  • 6ARULAMPALAM M S, MASKELL S, GORDON N, and etal. A tutori al on particle filters for online nonlinear/non Gaussian Bayesian tracking[J]. IEEE Transaction on Signa lProcessing, 2002,50(2):174-188.
  • 7RIPLEY B. Stochastic Simulation[M], New York:Wiley,1987.
  • 8CARLIN J, CLIFFORD P, FEARNHEAD P. Improved Particle Filter for Nonlinear Problems[A]. IEE Proceedings on Radar and Sonar Navigation[C], 1999.
  • 9DOUCET C. Convergence of Sequential Monte Carlo Methods[DB/OL].http://www.researchindex.com.
  • 10PAPAVASILIOU A. A Uniformly Convergent Adaptive Particle Filter[DB/OL]. www.columbia.edu.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部