期刊文献+

基于有限元方法的心脏表面建模 被引量:1

Heart Surface Modeling Based on Finite Element Method
下载PDF
导出
摘要 利用有限元与生物力学原理构建心脏表面运动的有限元方程,快速建立四面体网格的有限元心脏模型,模拟心脏的动态形变,从心脏的三维表面恢复、应力应变分析和三维运动建模等方面着手,分析计算心脏在收缩期相邻时刻的应力分布及形变情况,有效地模拟了心脏的动态形变。实验结果表明了该方法的有效性和可行性。 The method of the finite element equation of cardiac surface motion is constructed using the finite element method and the biological mechanics principle.The rapid generation of tetrahedral mesh for heart modeling of the finite element is used to simulate heart's dynamic deformation.Commencing on the 3D surface restoration,strain analysis and 3D motion modeling,the stress distribution and deformation of the cardiac during systole are analyzed and calculated.It effectively simulates dynamic deformation of the cardiac.The experimental results also show the effectiveness and validity.
作者 肖鹏飞
出处 《计算机与现代化》 2011年第2期58-60,64,共4页 Computer and Modernization
关键词 心脏建模 有限元方法 形变模型 四面体网格 heart modeling finite element method deformable model tetrahedral mesh
  • 相关文献

参考文献13

  • 1王元全,周则明,孙越泓,尤建洁,陈付华,王洪元,王平安,夏德深.带标记线的心脏核磁共振图象分析综述[J].中国图象图形学报(A辑),2003,8(11):1233-1241. 被引量:4
  • 2肖鹏飞,黄芳,李显良.基于快速建立四面体网格的有限元心脏建模[J].计算机仿真,2008,25(9):223-226. 被引量:3
  • 3夏利民,谷士文,沈新.基于形变模型的3D表面自适应重建[J].中国图象图形学报(A辑),2000,5(5):396-400. 被引量:8
  • 4谢贻权,何福保.弹性和塑性力学中的有限单元法[M].北京:机械工业出版社,1989.
  • 5赵建军,王启付.边界一致的Delaunay四面体网格稳定生成算法[J].机械工程学报,2004,40(6):100-106. 被引量:8
  • 6Hu Zhenhua,Metaxas Dimitris,Axel Leon.In vivo strain and stress estimation of the heart left and right ventricles from MRI images[J].Medical Image Analysis,2003,7(4):435-444.
  • 7[德] Kattan P I.Matlab有限元分析与应用[M].韩来彬译.北京:清华大学出版社,2004.
  • 8何素荣,李世斌.临床脉图诊断学[M].北京:人民军医出版社,2004:1,6-7.
  • 9Frangi A F,Niessen Wiro J,Viergever Max A.Three dimensional modeling for functional analyses of cardiac images:A review[J].IEEE Transactions on Medical Imaging,2001,20(1):2-25.
  • 10Laskow P,Kambhamettu C.Curvature-based algorithms for non-rigid motion and correspondence estimation[J].Radiology,1989,172(2):349-350.

二级参考文献104

  • 1赵建军,王启付.边界一致的Delaunay四面体网格稳定生成算法[J].机械工程学报,2004,40(6):100-106. 被引量:8
  • 2尤建洁,汤敏,王平安,夏德深.利用带标记线核磁共振图像的左心室力学形态分析[J].计算机辅助设计与图形学学报,2006,18(4):507-512. 被引量:2
  • 3[1]Guttman M A, Zerhouni E A, McVeigh E R. Analysis and visualization of cardiac function from MR images [J]. IEEE Computer Graphics and Applications, 1997, 17(1): 30~38.
  • 4[2]Frangi A F, Niessen W J, et al. Three dimensional modeling for functional analysis of cardiac Images: A review [J]. IEEE Transactions Medical Imaging, 2001, 20(1): 2~25.
  • 5[3]Zerhouni E A, Parish D, Rogers W et al. Human heart:Tagging with MR imaging-a method for noninvasive assessment of myocardial motion[J]. Radiology, 1988, 169: 59~63.
  • 6[4]Axel L, Dougherty L. MR imaging of motion with spatial modulation of magnetization [J]. Radiology, 1989, 171: 841 ~845.
  • 7[5]Axel L et al. Heart wall motion: Improved method of spatial modulation of magnetization[J]. Radiology, 1989, 172:349~350.
  • 8[6]Pelc N J, Herfkens R J, et al. Phase contrast cine magnetic resonance imaging[J]. Magnetic Resonance Quarterly, 1991, 7(4): 229~254.
  • 9[7]Alertras A H, Ding S, Balaban R S et al. DENSE: Displacement encoding with simulated echoes in cardiac functional MRI[J].Journal of Magnetic Resonance, 1999, 137(1): 247~252.
  • 10[8]Denney T S, Prince J. Reconstruction of 3D left ventricular motion from planar tagged cardiac MR images: An estimation theoretic Approach [J]. IEEE Transactions Medical Imaging,1995, 14(4) :625~635.

共引文献21

同被引文献19

  • 1Kodoth V, Castro NC, Glover BM, et al. Waveform optimization for internal cardioversion of atrial fibrillation[J]. J Electrocard, 201 I, 44(6): 689-693.
  • 2Luther S, Fenton FH, Kornreich BG, et al. Low-energy control of electrical turbulence in the heart[J]. Nature, 201 I, 7(14): 235-236.
  • 3Fahy JB, Kim Y, Ananthaswamy A. Optimal electrode configurations for external cardiac pacing and defibrillation: An inhomogeneous study[J]. IEEE Trans Biomed Eng, 1987, 34(9): 743-748.
  • 4Ramirez IF, Eisenberg SR, Lehr JL, el al. Effects of cardiac configuration, paddle placement and paddle size on defibrillation current distribution: A finite element model[J]. Med Bid Eng Comput, 1989, 27(1 ): 587-594.
  • 5Claydon F J, Pilkington TC, Tang AS, el al. A volume conductor model of the thorax for the study of defibrillation fields[J]. 1EEE Trans Biomed Eng, 1988, 11(35): 981-992.
  • 6Karlon W J, Eisenberg SR, Lehr JL. Effects of paddle placement and size on defibrillation current distribution: A three dimensional finite element model[J]. IEEE Trans Biomcd Eng, 1993, 3(40): 246-255.
  • 7Wei D, Okazaki O, Harumi K, el al. Comparative simulation of excitation and body surface electrocardiogram with isotropic and anisotropic, computer heart models[J]. IEEE Trans Biomed Eng, 1995, 42(4): 343-357.
  • 8Li W, Janardhan A, Fedorov V, el al. Low-energy multistage atrial defibrillation therapy terminates atrial fibrillation with less energy than a single shock[J]. Circ Arrhythm Electrophysiol, 2011, 4(6): 917-927.
  • 9Yang F, Sha Q, Patterson RP. A novel electrode placement strategy for low-energy internal cardioversion of atrial fibrillation: A simulation study[J], lnt J Cardiol, 2012, 158(I): 149-152.
  • 10Timmermans C,Rodriguez LM, Ayers GM, et al. EfTect of electrode length on atrial defibrillation thresholds[J]. J Cardiovasc Electrophysiol, 1998, 9(6): 582-587.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部