期刊文献+

煤层属性空间变异的差分进化径向基神经网络插值 被引量:5

Spatial interpolation of coalbed properties by radial basis function neural network based on differential evolution
下载PDF
导出
摘要 为提高煤层属性空间变异的插值精度,建立了径向基函数神经网络(RBFNN)预测模型。为提高差分进化算法(DE)的全局寻优能力,提出基于非均匀变异的最优克隆算子,使之融入DE,形成最优克隆差分进化算法(OCDE);并应用OCDE优化RBFNN的参数,构成了差分进化径向基神经网络插值方法。以贵州省织纳煤田为例,应用于煤层属性预测,分别设立插值方法的拟合精度评价指标——标准均方根误差(ENRMS)和预测精度评价指标——平均相对误差百分比(EMRP)。差分进化径向基神经网络方法在84个样本时,煤层厚度属性插值的ENRMS和EMRP值分别为23.31%和11.63%。在样本容量为84、74、64、54、44、34个训练样本集条件下,该方法的ENRMS和EMRP值都小于相应训练样本集的Kriging方法,插值的拟合精度和预测精度都显著好于Kriging方法。 For improving the interpolation precision of spatial variability of coalbed properties,based on optimal clone differential evolution algorithm(OCDE),a radial basis function neural network(RBFNN) was designed for interpolating coalbed properties using limited data.The OCDE that was applied to find optimal parameters for RBFNN was generated by the integration of differential evolution algorithm(DE) and optimal clone operator(OC) with non-uniform mutation.Normalized root mean square error(ENRMS) and mean relative error percent(EMRP) respectively came into use for evaluating the levels of fitting and prediction precision of RBFNN and kriging for spatial interpolation of coalbed properties.In the case study,the ENRMS and EMRP of RBFNN interpolation for coalbed thickness are 23.31% and 11.63% when the sample size is at 84.For the coalbed thickness and other properties,the ENRMS and EMRP of RBFNN interpolation are fewer than that of Kriging with different sample sizes.
作者 雷能忠
出处 《煤炭学报》 EI CAS CSCD 北大核心 2011年第2期203-209,共7页 Journal of China Coal Society
基金 国家自然科学基金重点资助项目(40730422) 地质过程与矿产资源国家重点实验室开放课题(GPMR200905)
关键词 煤层属性 插值 最优克隆差分进化算法(OCDE) 径向基函数神经网络(RBFNN) coalbed properties spatial interpolation optimal clone differential evolution algorithm(OCDE) radial basis function neural network(RBFNN)
  • 相关文献

参考文献14

  • 1侯景儒 尹镇南 李维明 等.实用地质统计学[M].北京:地质出版社,1998..
  • 2Yost R S, Uehara Gand Fox R L. Geostatistical analysis of soil chemical properties of large land areas. I. Semivariograms [J]. Soil Sci. Soc. Am. J. ,1982,46:1 028-1 037.
  • 3何亚群,左蔚然,张书敏,劳国洪,段晨龙.基于地质统计学的煤田煤质插值方法比较[J].煤炭学报,2008,33(5):514-517. 被引量:15
  • 4Ping J L, Dobermann A. Variation in the precision of soil organic carbon maps due to different laboratory and spatial prediction methods [ J ]. Soil Science,2006,171 ( 5 ) :374-387.
  • 5Han S, Schneider M S, Evans R G. Evaluating cokriging for improving soil nutrient sampling efficiency[ J ]. Transactions of the ASAE, 2003,46 ( 3 ) :845-849.
  • 6Yang Shengqiang, Sun Yan, Chen Zuyun, et al. Establishment of greyneural network forecasting model of coal and gas outburst [ J ]. Procedia Earth and Planetary Science, 2009,1 ( 1 ) :148-153.
  • 7Liu Y P, Wu M G, Qian J X. Predicting coal ash fusion temperature based on its chemical composition using ACO-BP neural network [J]. Thermoehimica Acta, 2007,454 ( 1 ) : 64 -68.
  • 8ZHANG Yong-jian WU Guo-guang XU Hong-feng MENG Xian-liang WANG Guang-you.Prediction of oxygen concentration and temperature distribution in loose coal based on BP neural network[J].Mining Science and Technology,2009,19(2):216-219. 被引量:9
  • 9Yang Min, Wang Yunjia, Cheng Yuanping. An incorporate genetic algorithm based back propagation neural network model for coal and gas outburst intensity prediction [ J ]. Procedia Earth and Planetary Science,2009,1 ( 1 ) : 1 285 - 1 292.
  • 10Sang Haifeng, Wang Fuli, Liu Linmao, et al. Detection of element content in coal by pulsed neutron method based on an optimized back-propagation neural network [ J ]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms ,2005,239 (3) :202-208.

二级参考文献29

共引文献205

同被引文献60

  • 1张明禄,王家华,卢涛.应用储层随机建模方法计算概率储量[J].石油学报,2005,26(1):65-68. 被引量:19
  • 2李宏宙.多项式时间、指数时间复杂性类和Tally集[J].科学通报,1995,40(3):278-279. 被引量:1
  • 3李军,郝天珧.油气储层随机模拟方法综述[J].地球物理学进展,2006,21(2):458-464. 被引量:23
  • 4司马文霞,刘凡,孙才新,廖瑞金,杨庆.基于改进的径向基函数神经网络的铁磁谐振系统混沌控制[J].物理学报,2006,55(11):5714-5720. 被引量:8
  • 5SIMON HAYKIN,MCMASTER.神经网络与机器学习[M].北京:机械工业出版社,2009.
  • 6Elvind Damsleth. A two-stage stochastic model applied to a north sea reservoir[J]. Journal of Petroleum Technology,1992,44(4) :310-312.
  • 7Haldorsen H H, Damsleth R. Stochastic modeling[ J]. Journal of Pe- troleum Technology, 1990,42 (4) :404-412.
  • 8Rossmary Villegas, Oliver Dora, Miguel Moscoso, et al. Reservoir characterization using stochastic initializations and the level set method[ J]. Computers and Mathematics with Applications,2008, 56(2) :697-708.
  • 9Herlander Mata-Lima. Reservoir characterization with iterative direct sequential co-simulation: integrating fluid dynamic data into stochas-tic model[ J ]. Journal of Petroleum Science and Engineering,2008, 62( 1 ) :59-72.
  • 10JeffreyMYams,RichardLChambers.随机建模和地质统计学:原理、方法和实例研究[M].北京:石油工业出版社,2000.

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部