摘要
发现以下三者的协同作用是实现精细算法高精度、高效率的内在机理和根本原因:1)|x|<∞,指数矩阵eHx的Maclaurin级数展开式绝对收敛;2)初始Maclaurin级数展开式中的有效展开项总数能够通过递推算法以指数方式扩展;3)新增有效展开项的系数能够通过递推算法以指数或拟指数方式逼近其真值。此外,本文还给出了精细算法的截项误差递推公式和相关的误差上界,发现随着保留项数M或递推阶数N的增大,精细算法的逼近误差上界以指数方式减小。
The present paper discovers that the inherent mechanism and fundamental
cause of realizing the high approximating precision and computing efficiency by the precision
computation method for dynamics system lies in the cooperation of the following three
factors:1) |x|<∞,the expansion of exponential matrix e Hx in Maclaurin series is
absolutely convergent. 2) the active expansion item of exponential matrix e Hx in
Maclaurin series increase exponentially as recurrent course. 3) the coefficients of newly adding
active expansion items will approximate their actual values exponentially or quasi
exponentially as recurrent course. Besides, the recursion formula of the error from cut items
and the related error upper limit of the precision computation method is presented, and the
following rule is discovered that the approximate error upper limit of the precision computation
method decreases exponentially as increasing of reserved item M or recursion order N.
出处
《计算力学学报》
CAS
CSCD
1999年第3期260-268,共9页
Chinese Journal of Computational Mechanics
基金
国家自然科学基金
航空基金
863计划
关键词
精细算法
逼近机理
结构动力学
误差上界
precision computation
approximate mechanism
exponential convergence
recursion
formula
upper error limit