期刊文献+

评估子集类区分能力的特征选择方法 被引量:3

A feature selection approach to estimate discriminationcapability of feature subset category
原文传递
导出
摘要 为了克服Relief选择前k个特征作为约简子集所存在的原始特征空间中的近邻在约简后的特征子空间中不一定还是近邻的问题,提出了一种在特征子空间中评价候选特征子集类别区分能力的方法,并结合最好优先特征搜索策略提出了一种新的特征子集选取方法.在12个UCI(加州大学欧文分校)数据集和1个老年痴呆实测数据集上,就约减能力对所提方法与其他3种经典特征选择方法进行了比较,并用决策树、逻辑回归模型详细比较了分类效果.实验结果表明:所提方法不仅能够选出特征数目较少的特征子集,而且特征子集的分类效果良好. The nearest neighbor of a sample in original feature space does not necessarily hold in the reduced feature space. To overcome above problem of Relief that select top k features as a reduced fea- ture subset, a feature subset evaluation method was proposed to assess the discrimination capability of a feature subset in reduced feature subset space. Combining the evaluation method with the best-first search strategy, a new feature subset selection method was developed. This method was compared with three classical feature selection approaches by using decision tree and logistic regression algo- rithms on 12 UCI (University of California Irvine) data sets and Alzheimer's disease truth data. Experimental results demonstrate that not only this method is able to select a feature subset with smaller number of features for most data sets, but also the performance of classification is excellent in most cases.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第2期1-5,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家高技术研究发展计划资助项目(2006AA02Z347) 科技部国际科技合作项目(2009DFA12290)
关键词 特征选择 特征子集 特征评价 分类 老年痴呆症 feature selection feature subset feature evaluation classification Alzheimer's disease
  • 相关文献

参考文献10

  • 1Robnik-Sikonja M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF[J]. Ma- chine I.earning, 2003, 53(1): 23-69.
  • 2Kononenko I. Estimating attributes: analysis and ex- tensions of Relief [C] // Proceedings of Machine Learning(ECML). Catania: Springer, 1994: 171- 182.
  • 3Robnik Sikonja M, Kononenko I. An adaptation of relief for attribute estimation in regression[C]//Pro- ceedings of Machine Learning: Proceedings of the Fourteenth International Conference. Tennessee; Morgan Kaufmann, 1997: 296-304.
  • 4Sun Yijun. Iterative Relief for feature weighting: al- gorithms, theories, and applications [J ]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2007, 29(6): 1035-1051.
  • 5Kira K, Rendell I. A. The feature selection problem: traditional methods and a new algorithm[C]// Pro-ceedings of the National Conference on Artificial In telligenee. San Jose: John Wiley & Sons Ltd, 1992 129-129.
  • 6Hinneburg A, Aggarwal C C, Keim D A. What is the nearest neighbor in high dimensional spaces [C] // Proceedings of the 26th International Confer- ence on Very Large Data Bases. Cairo: Morgan Kaufmann,2000 : 506-515.
  • 7Asuneion A, Newman D J. UCI machine learning re- pository[EB/OL]. [2010-06-01]. http;//archive. ies. uci. edu/ml/.
  • 8Hall M A. Correlation-based feature selection for ma- chine learning[D]. Hamilton: Department of Com- puter Sieence, The University of Waikato, 1999.
  • 9Liu H, Setiono R. A probabilistic approach to feature selection., a filter solution[C]// Proceedings of the 13th International Conference on Machine Learning. Bari: Morgan Kaufmann, 1996: 319-327.
  • 10Mark H, Eibe F, Geoffrey H, et al. The WEKA data mining software., an update[J], Sigkdd Explo- rations, 2009, 11(1): 10-18.

同被引文献33

  • 1王华忠,俞金寿.核函数方法及其在软测量建模中的应用研究[J].自动化仪表,2004,25(10):22-25. 被引量:6
  • 2SUDHIR S, SYED A J. Soft sensing and optimal power control for cognitive radio [ J ]. IEEE Transactions on wireless communication ,2010,9(12) :3638-3649.
  • 3GIORGIO G. Functional optimization by variable-basis approximation schemes [ J ]. A Quarterly Journal of Operations Research ,2011,9 : 103-106.
  • 4MASION R. L, GUNST R. F. Statistical design and analysis of experiments with applications to engineering and science [ M ]. New York : John Wiley & Sons,2004.
  • 5MCDONALD G C,SCHWING R C. Instabilities of regression estimates relating air pollution to mortality [ J ]. Technometrics, 1973,15 ( 3 ) :463-481.
  • 6SAMPRIT C, HADI A, BERTRAM P. Regression analysis by example [ M ]. 3nd ed John Wiley & Sons: New York, 2000.
  • 7WOLD S, SJOSTROM M, ERIKSSON L. PLS-regression : a basic tool of chemometrics [ J ]. Chemometrics & Intelligent Laboratory Systems ,2001,58 ( 2 ) : 109-130.
  • 8ABARBANE H D I, BROWN R, SIDOROWICH J J, et al. The analysis of observed chaotic data in physical systems[J]. Rev. Mod. Phy. ,1993,65 (4) :1331-1392.
  • 9JAVIDI S,TOOK C C,MANDIC D P. Fast independent component analysis algorithm for quatemion valued signals [ J ]. IEEE transactions on neural networks, 2011, 22 ( 12 ) : 1967-1978.
  • 10SUSHIR S, SYED A J. Soft sensing and optimal power control for cognitive radio[J]. IEEE Transactions on Wireless Communieation, 2010, 9(12): 3638-3649.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部