期刊文献+

糖多孢红霉菌酮还原酶域在羰基还原中的应用 被引量:4

Application of ketoreductase domain in polyketide synthase from Saccharopolyspora erythraea to carbonyl reduction
原文传递
导出
摘要 为研究糖多孢红霉菌聚酮合成酶模块1的酮还原酶域,催化羰基还原的底物特异性和立体选择性,PCR扩增了该酶域的编码基因(eryKR1),并将其克隆到表达载体pET-28a,得到重组质粒pET-eryKR1,转化到Escherichia coli BL21(DE3)后,获得了重组菌株E.coli BL21(pET-eryKR1).将E.coli BL21(pET-eryKR1)和异源表达枯草芽孢杆菌葡萄糖脱氢酶基因的重组大肠杆菌E.coli BL21(pET-gdh1)进行双重组菌耦合,对4-氯乙酰乙酸乙酯、苯乙酮、2-辛酮和环己酮4种底物进行转化还原,利用气相色谱分析转化液,结果显示E.coli BL21(pET-eryKR1)对环己酮的还原效果较好,产物环己醇的得率最高可达93.24%,而对其他3种底物几乎没有还原能力.利用E.coli BL21(pET-eryKR1)2催化2-甲基环己酮不对称还原,产物主要为顺式-2-甲基环己醇,产率可达41.87%,产物的对映体过量值为74.81%. In order to define substrate specificity and enantioselectivity of ketoreductase domain in the first module of polyketide synthase from Saccharopolyspora erythraea, the eryKR1 gene coding this domain was amplified by PCR (polymerase chain reaction) and cloned into vector pET-28a to construct recombinant plasmid pET-eryKR1. The plasmid was then transformed into Esckerichia coli BL21 (DE3) to obtain recombinant E. coli BL21 (pET eryKR1). The recombinant and E. coli BL21 (pET- gdhl) harboring Bacillus subtilis glucose dehydrogenase gene fermented together with ethyl 4-chloro- 3-oxobutanoate, acetophenone, 2-octanone or cyclohexanone as reduction substrate, respectively. Gas chromatography analysis of these ferments showed that among the four substrates recombinants could not reduce other than cyclohexanone, and the best yield of cyclohexanol could reach 93.24% Then E. coli BL21 (pET-eryKR1)2 was chosen to ferment together with 2-methylcyclohexanone. The result showed that this strain could mainly reduce 2-methylcyclohexanone to produce cis-2-methylcyclohexanol, the yield was 41.87%, and enantiomeric excess was 74.81%.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第2期72-75,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 湖北省自然科学基金资助项目(2009CAD006) 武汉科技大学校基金资助项目(2006XY14)
关键词 2-甲基环己酮 酮还原酶域 聚酮合成酶 糖多孢红霉菌 生物催化 2 methylcyclohexanone ketoreductase domain polyketide synthase Saccharopolyspora erythraea biocatalysis
  • 相关文献

参考文献10

  • 1Shen B. Polyketide biosynthesis beyond the type Ⅰ ,Ⅱ and Ⅲ polyketide synthase paradigms[J]. Current Opinion in Chemical Biology, 2003, 7(2) : 285-295.
  • 2Stergaard L H, Kellenberger L, Cortes J, et al. Ster- eochemistry of catalysis by the ketoductase activity in the first extension module of the erythromycin polyketide synthase[J]. Biochemistry, 2002, 41(8): 2719-2726.
  • 3Keatinge~Clay A T, Stroud R M. The structure of a ketoreductase determines the organization of the beta- carbon processing enzymes of modular polyketide syn- thases[J]. Structure, 2006, 14(4): 737-748.
  • 4Bali S O, Hare H M, Weissman K J. Broad substrate specificity of ketoreductases derived from modular polyketide synthases [J]. Chem Biochem, 2006, 7(3) : 478-484.
  • 5Sambrook J, Frisch E F, Maniatis T. Molecular clo- ning: a laboratory manual[M]. 2nd Edition. New York: Cold Spring Harbor Laboratory Press, 1992.
  • 6Hopwood D A, Bibb M J, Chater K F, et al. Genetic manipulation of streptomyces; a laboratory manual [M]. Norwich: The John Innes Foundation, 1985.
  • 7李凌凌,张部昌,张华,任洌,刘传暄,马清钧.糖多孢红霉菌λC3-SRR突变体的构建及其产物鉴定[J].军事医学科学院院刊,2004,28(4):314-318. 被引量:6
  • 8李凌凌,吕早生,吴敏,袁向利.重组的葡萄糖脱氢酶催化辅酶的再生性质[J].华中科技大学学报(自然科学版),2010,38(3):112-115. 被引量:6
  • 9敬科举,徐志南,林建平,岑沛霖.重组大肠杆菌细胞不对称还原4-氯乙酰乙酸乙酯合成(R)-(+)-4-氯-3-羟基丁酸乙酯[J].催化学报,2005,26(11):993-998. 被引量:12
  • 10Siskos A P, Baerga-Ortiz A, Bali S, et al. Molecu- lar basis of celmer's rules: stereochemistry of cataly- sis by isolated ketoreductase domains from modular polyketide synthases[ J]. Chemistry and Biology, 2005, 12(10): 1145-1153.

二级参考文献34

  • 1敬科举,徐志南,林建平,岑沛霖.重组大肠杆菌细胞不对称还原4-氯乙酰乙酸乙酯合成(R)-(+)-4-氯-3-羟基丁酸乙酯[J].催化学报,2005,26(11):993-998. 被引量:12
  • 2Kaluzna I A, Rozzell J D, Kambourakis S. Ketore ductases: stereoselective catalysts for the facile syn thesis of ehiral alcohols[J]. Tetrahedron: Asymmetry, 2005, 16(22): 3 682-3 689.
  • 3Yang W, Xu J H, Pan J, et al. Efficient reduction of aromatic ketones with NADPH regeneration by using crude enzyme from Rhodotorula cells and mannitol as cosulostrate [J]. Biochemical Engineering Journal, 2008, 42(1):1 -5.
  • 4Kim Y H, Yoo Y J. Regeneration of the nicotinamide cofactor using mediator-free electrochemical method with a tin oxide electrode[J]. Enzyme and Microbial Technology, 2009, 44(3): 129-134.
  • 5Kataoka M, Yamamoto K, Kawabata H, et al. Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes[J]. Appl Microbiol Biotechnol, 1999, 51(4): 486 -490.
  • 6Iyer R B, Bachas L G. Enzymatic recycling of NADPH at high temperature utilizing a thermostable glucose-6-phosphate dehydrogenase from Bacillus stearothermophilus[J]. Journal of Molecular Catalysis B: Enzymatic, 2004, 28(1): 1-5.
  • 7Qiao J J, Lu F P, Chen Q M, et al. Cloning and high level expression of glucose dehydrogenase gene from Bacillus subtilis in E. coli[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2004,37 ( 2 ) : 13- 17.
  • 8Sambrook J, Frisch E F, Maniatis T. Molecular cloning: a laboratory manual[M].2nd Edition. New York: Cold Spring Harbor Laboratory Press, 1992.
  • 9Utsukihara T, Watanabe S, Tomiyama A, et al. Stereoselective reduction of ketones by various vegetables[J].Journal of Molecular Catalysis B: Enzymatic, 2006, 41(3- 4):103-109.
  • 10Bali S, O'Hare H M, Weissman K J. Broad substrate specificity of ketoreductases derived from modular polyketlde synthases [J]. ChemBioehem, 2006, 7(3): 478-484.

共引文献19

同被引文献42

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部